Azure Databricks でSQL Analysis Services のデータに接続してデータ処理を行う方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
CData JDBC Driver、Azure、Databricks を使用して、リアルタイムSQL Analysis Services のデータのデータエンジニアリングとデータサイエンスを実行。

Databricks は、Apache Spark によるデータ処理機能を提供するクラウドベースのサービスです。CData JDBC ドライバと組み合わせることで、Databricks を使用してリアルタイムSQL Analysis Services のデータのデータエンジニアリングとデータサイエンスを実行できます。この記事では、Azure で CData JDBC ドライバをホストし、Databricks からリアルタイムSQL Analysis Services のデータに接続してデータを処理する方法を説明します。

最適化されたデータ処理機能を組み込んだ CData JDBC ドライバは、リアルタイムSQL Analysis Services のデータとのインタラクションにおいて卓越したパフォーマンスを発揮します。SQL Analysis Services に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を直接SQL Analysis Servicesにプッシュし、サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。動的メタデータクエリ機能により、ネイティブのデータ型を使用してSQL Analysis Services のデータの操作・分析が可能です。

CData JDBC ドライバを Azure にインストール

Databricks でリアルタイムSQL Analysis Services のデータを操作するには、Azure Data Lake Storage(ADLS)を通じてドライバーをインストールします。(以前のバージョンの記事で説明していた DBFS を介した接続方法は非推奨となっていますが、廃止日は公開されていません。

  1. JDBC JAR ファイルを任意の Blob コンテナにアップロードします(例:「databrickslibraries」ストレージアカウントの「jdbcjars」コンテナ)。
  2. ストレージアカウントから「セキュリティとネットワーク」を展開し、「アクセスキー」をクリックしてアカウントキーを取得します。使用するキーを表示してコピーしてください。
  3. コンテナに移動し、JAR を保存している特定のコンテナを開き、JDBC JAR ファイルのエントリを選択して JAR ファイルの URL を取得します。ファイルの詳細が開き、URL をクリップボードにコピーするボタンがあります。この値は以下のようになります(「blob」の部分はストレージアカウントの種類によって異なる場合があります):
    https://databrickslibraries.blob.core.windows.net/jdbcjars/cdata.jdbc.salesforce.jar
  4. Databricks クラスターの「Configuration」タブで「Edit」ボタンをクリックし、「Advanced options」を展開します。そこで、以下の Spark オプション(JAR URL のドメイン名から派生)に、コピーしたアカウントキーを値として追加し、「Confirm」をクリックします: spark.hadoop.fs.azure.account.key.databrickslibraries.blob.core.windows.net
  5. Databricks クラスターの「Libraries」タブで「Install new」をクリックし、ADLS オプションを選択します。ドライバー JAR の ABFSS URL(これも JAR URL のドメイン名から派生)を指定し、「Install」をクリックします。ABFSS URL は以下のようになります:
    abfss://jdbcjars@databrickslibraries.blob.core.windows.net/cdata.jdbc.salesforce.jar

Databricks からSQL Analysis Servicesに接続

JAR ファイルがインストールされたら、Databricks でリアルタイムSQL Analysis Services のデータを操作する準備が整いました。まず、ワークスペースで新しいノートブックを作成します。ワークブックに名前を付け、言語として Python が選択されていることを確認し(デフォルトで選択されているはずです)、「Connect」をクリックして「General Compute」から JDBC ドライバーをインストールしたクラスターを選択します(デフォルトで選択されているはずです)。

SQL Analysis Servicesへの接続を設定

JDBC ドライバのクラスを参照し、JDBC URL で使用する接続文字列を構築してSQL Analysis Servicesに接続します。また、JDBC URL に RTK プロパティを設定する必要があります(Beta ドライバーを使用している場合を除く)。このプロパティの設定方法については、インストールに含まれるライセンスファイルを参照してください。

driver = "cdata.jdbc.ssas.SSASDriver"
url = "jdbc:ssas:RTK=5246...;User=myuseraccount;Password=mypassword;URL=http://localhost/OLAP/msmdpump.dll;"

組み込みの接続文字列デザイナー

JDBC URL の構築には、SQL Analysis Services JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。

java -jar cdata.jdbc.ssas.jar

接続プロパティを入力し、接続文字列をクリップボードにコピーします。

接続するには、Url プロパティを有効なSQL Server Analysis Services エンドポイントに設定して認証を提供します。XMLA アクセスを使用して、HTTP 経由でホストされているSQL Server Analysis Services インスタンスに接続できます。 Microsoft ドキュメント configure HTTP access を参照してSQL Server Analysis Services に接続してください。

SQL をSQL Server Analysis Services に実行するには、ヘルプドキュメントの「Analysis Services データの取得」を参照してください。接続ごとにメタデータを取得する代わりに、CacheLocation を設定できます。

  • HTTP 認証

    AuthScheme を"Basic" または"Digest" に設定してUser とPassword を設定します。CustomHeaders に他の認証値を指定します。

  • Windows (NTLM)

    Windows のUser とPassword を設定して、AuthScheme をNTLM に設定します。

  • Kerberos およびKerberos Delegation

    Kerberos を認証するには、AuthScheme をNEGOTIATE に設定します。Kerberos 委任を使うには、AuthScheme をKERBEROSDELEGATION に設定します。必要があれば、User、Password およびKerberosSPN を設定します。デフォルトでは、CData 製品は指定されたUrl でSPN と通信しようと試みます。

  • SSL/TLS:

    デフォルトでは、CData 製品はサーバーの証明書をシステムの信頼できる証明書ストアと照合してSSL/TLS のネゴシエーションを試みます。別の証明書を指定するには、利用可能なフォーマットについてヘルプドキュメントの「SSLServerCert」プロパティを参照してください。

接続を設定したら、その後はあらゆるキューブを二次元テーブルとして扱うことができます。データに接続する際にCData 製品がSSAS のメタデータを取得して、動的にテーブルスキーマを更新します。 「CacheLocation」プロパティを設定すれば自動でファイルにキャッシュを作成するので、接続時に毎回メタデータを取得する必要もなくなります。

詳細は、ヘルプドキュメントの「Retrieving Analysis Services Data」を参照してください。

SQL Analysis Services のデータの読み込み

接続を設定したら、CData JDBC ドライバと接続情報を使用してSQL Analysis Services のデータをデータフレームとして読み込むことができます。

remote_table = spark.read.format ( "jdbc" ) \
	.option ( "driver" , driver) \
	.option ( "url" , url) \
	.option ( "dbtable" , "Adventure_Works") \
	.load ()

SQL Analysis Services のデータの表示

読み込んだSQL Analysis Services のデータを display 関数で確認してみましょう。

display (remote_table.select ("Fiscal_Year"))

Azure Databricks でSQL Analysis Services のデータを分析

Databricks SparkSQL でデータを処理したい場合は、読み込んだデータを一時ビューとして登録します。

remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )

以下の SparkSQL で分析用のSQL Analysis Services のデータを取得できます。

result = spark.sql("SELECT Fiscal_Year, Sales_Amount FROM SAMPLE_VIEW")

SQL Analysis Services からのデータは、対象のノートブック内でのみ利用可能です。他のユーザーと共有したい場合は、テーブルとして保存してください。

remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )

CData JDBC Driver for SQL Analysis Services の30日間の無償トライアルをダウンロードして、Azure Databricks でリアルタイムSQL Analysis Services のデータを活用してみてください。ご不明な点があれば、サポートチームまでお気軽にお問い合わせください。

はじめる準備はできましたか?

SQL Analysis Services Driver の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

SQL Server Analysis Services Icon SQL Analysis Services JDBC Driver お問い合わせ

SQL Analysis Services 連携のパワフルなJava アプリケーションを素早く作成して配布。