Apache Airflow で Sage 300 データを連携

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
CData JDBC Driver を使用して、Apache Airflow で Sage 300 のデータ にアクセスして処理。

Apache Airflow は、データエンジニアリングワークフローの作成、スケジューリング、モニタリングをサポートするツールです。 CData JDBC Driver for Sage 300 と組み合わせることで、Airflow からリアルタイムの Sage 300 のデータ を扱うことができます。 この記事では、Apache Airflow インスタンスから Sage 300 のデータ に接続してクエリを実行し、結果を CSV ファイルに保存する方法を説明します。

CData JDBC ドライバーは、最適化されたデータ処理機能を組み込んでおり、 リアルタイムの Sage 300 のデータ を扱う際に比類のないパフォーマンスを発揮します。複雑な SQL クエリを Sage 300 に発行すると、 ドライバーはフィルタや集計などのサポートされている SQL 操作を直接 Sage 300 にプッシュし、 サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。 また、組み込みの動的メタデータクエリ機能により、ネイティブのデータ型を使用して Sage 300 のデータ の操作・分析が可能です。

Sage 300 への接続を設定

組み込みの接続文字列デザイナー

JDBC URL の構築には、Sage 300 JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。

java -jar cdata.jdbc.sage300.jar

接続プロパティを入力し、接続文字列をクリップボードにコピーします。

Sage 300 には、Sage 300 Web API で通信するための初期設定が必要となるます。

  • Sage 300 のユーザー向けのセキュリティグループを設定します。Sage 300 のユーザーに、Security Groups の下にあるbSage 300 Web API オプションへのアクセスを付与します(各モジュール毎に必要です)。
  • /Online/Web/Online/WebApi フォルダ内のweb.config ファイルを両方編集して、AllowWebApiAccessForAdmin のキーを true 設定します。webAPI アプリプールを再起動すると設定が反映されます。
  • ユーザーアクセスを設定したら、https://server/Sage300WebApi/ をクリックして、web API へのアクセスを確認してください。

Basic 認証を使用してSage 300 へ認証します。

Basic 認証を使用して接続する

Sage 300 に認証するには、次のプロパティを入力してください。プロバイダーは、クッキーを使用してSage 300 が開いたセッションを再利用することに注意してください。 そのため、資格情報はセッションを開く最初のリクエストでのみ使用されます。その後は、Sage 300 が返すクッキーを認証に使用します。

  • Url:Sage 300 をホストするサーバーのURL に設定します。Sage 300 Web API 用のURL を次のように作成してください。 {protocol}://{host-application-path}/v{version}/{tenant}/ 例えば、 http://localhost/Sage300WebApi/v1.0/-/ です。
  • User:アカウントのユーザー名に設定します。
  • Password:アカウントのパスワードに設定します。

クラスター環境やクラウドで JDBC ドライバーをホストする場合は、ライセンス(製品版またはトライアル版)とランタイムキー(RTK)が必要です。ライセンス(またはトライアル)の取得については、弊社営業チームにお問い合わせください

以下は、JDBC 接続に必要な主なプロパティです。

プロパティ
データベース接続 URLjdbc:sage300:RTK=5246...;User=SAMPLE;Password=password;URL=http://127.0.0.1/Sage300WebApi/v1/-/;Company=SAMINC;
データベースドライバークラス名cdata.jdbc.sage300.Sage300Driver

Airflow で JDBC 接続を設定

  1. Apache Airflow インスタンスにログインします。
  2. Airflow インスタンスのナビゲーションバーで、Admin にカーソルを合わせ、Connections をクリックします。
  3. 次の画面で + ボタンをクリックして、新しい接続を作成します。
  4. Add Connection フォームで、必要な接続プロパティを入力します:
    • Connection Id:接続の名前を入力します(例:sage300_jdbc)
    • Connection Type:JDBC Connection
    • Connection URL:上記の JDBC 接続 URL(例:jdbc:sage300:RTK=5246...;User=SAMPLE;Password=password;URL=http://127.0.0.1/Sage300WebApi/v1/-/;Company=SAMINC;)
    • Driver Class:cdata.jdbc.sage300.Sage300Driver
    • Driver Path:PATH/TO/cdata.jdbc.sage300.jar
  5. フォーム下部の Test ボタンをクリックして、新しい接続をテストします。
  6. 新しい接続を保存すると、次の画面で接続リストに新しい行が追加されたことを示す緑色のバナーが表示されます。

DAG の作成

Airflow の DAG は、ワークフローのプロセスを保存し、トリガーすることでワークフローを実行できるエンティティです。 ここでのワークフローは、Sage 300 のデータ に対して SQL クエリを実行し、結果を CSV ファイルに保存するというシンプルなものです。

  1. まず、ホームディレクトリに「airflow」フォルダがあるはずです。その中に「dags」という新しいディレクトリを作成します。 ここに Python ファイルを保存すると、UI 上で Airflow DAG として表示されます。
  2. 次に、新しい Python ファイルを作成し、sage 300_hook.py という名前を付けます。このファイルに以下のコードを挿入してください:
    	import time
    	from datetime import datetime
    	from airflow.decorators import dag, task
    	from airflow.providers.jdbc.hooks.jdbc import JdbcHook
    	import pandas as pd
    
    	# DAG を宣言
    	@dag(dag_id="sage 300_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv'])
    
    	# DAG 関数を定義
    	def extract_and_load():
    	# タスクを定義
    		@task()
    		def jdbc_extract():
    			try:
    				hook = JdbcHook(jdbc_conn_id="jdbc")
    				sql = """ select * from Account """
    				df = hook.get_pandas_df(sql)
    				df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1)
    				# print(df.head())
    				print(df)
    				tbl_dict = df.to_dict('dict')
    				return tbl_dict
    			except Exception as e:
    				print("Data extract error: " + str(e))
    
    		jdbc_extract()
    
    	sf_extract_and_load = extract_and_load()
    
  3. このファイルを保存し、Airflow インスタンスを更新します。DAG のリストに「sage 300_hook」という新しい DAG が表示されるはずです。
  4. この DAG をクリックし、次の画面で一時停止スイッチをクリックして青色にオンにします。次に、トリガー(再生)ボタンをクリックして DAG を実行します。これにより、sage 300_hook.py ファイル内の SQL クエリが実行され、コード内で指定したファイルパスに CSV として結果がエクスポートされます。
  5. 新しい DAG をトリガーした後、Downloads フォルダ(または Python スクリプト内で指定した場所)を確認すると、CSV ファイルが作成されていることがわかります。この例では account.csv です。
  6. CSV ファイルを開くと、Apache Airflow によって Sage 300 のデータ が CSV 形式で利用可能になっていることを確認できます。

詳細情報と無料トライアル

CData JDBC Driver for Sage 300 の30日間無料トライアルをダウンロードして、Apache Airflow でリアルタイムの Sage 300 のデータ を活用してみてください。ご質問があれば、サポートチームまでお気軽にお問い合わせください。

はじめる準備はできましたか?

Sage 300 Driver の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

Sage 300 Icon Sage 300 JDBC Driver お問い合わせ

Sage 300 に連携するJava アプリケーションを素早く、簡単に開発できる便利なドライバー。