Python でGreenplum のデータを変換・出力するETL 処理を作る方法
Pythonエコシステムには多くのモジュールがあり、システム構築を素早く効率的に行うことができます。本記事では、CData Python Connector for Greenplum とpetl フレームワークを使って、Greenplum のデータにPython から接続してデータを変換、CSV に出力するETL 変換を実装してみます。
CData Python Connector は効率的なデータ処理によりGreenplum のデータ にPython から接続し、高いパフォーマンスを発揮します。Greenplum にデータをクエリする際、ドライバーはフィルタリング、集計などがサポートされている場合SQL 処理を直接Greenplum 側に行わせ、サポートされていないSQL 処理については、組み込みのSQL エンジンによりクライアント側で処理を行います(JOIN やSQL 関数など)。
必要なモジュールのインストール
pip で必要なモジュールおよびフレームワークをインストールします:
pip install petl pip install pandas
Python でGreenplum のデータをETL 処理するアプリを構築
モジュールとフレームワークをインストールしたら、ETL アプリケーションを組んでいきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。
CData Connector を含むモジュールをインポートします。
import petl as etl import pandas as pd import cdata.greenplum as mod
接続文字列で接続を確立します。connect 関数を使って、CData Greenplum Connector からGreenplum への接続を行います
cnxn = mod.connect("User=user;Password=admin;Database=dbname;Server=127.0.0.1;Port=5432;")
Greenplum に接続するには、Server、Port (デフォルトポートは5432)、およびDatabase 接続プロパティを設定して、サーバーへの認証に使用するUser とPassword を設定します。Database プロパティが指定されていない場合、CData 製品はユーザーのデフォルトデータベース(ユーザーと同じ名前になります)に接続します。
Greenplum をクエリするSQL 文の作成
Greenplum にはSQL でデータアクセスが可能です。Orders エンティティからのデータを読み出します。
sql = "SELECT Freight, ShipName FROM Orders WHERE ShipCountry = 'USA'"
Greenplum データのETL 処理
DataFrame に格納されたクエリ結果を使って、petl でETL(抽出・変換・ロード)パイプラインを組みます。この例では、Greenplum のデータ を取得して、ShipName カラムでデータをソートして、CSV ファイルにデータをロードします。
table1 = etl.fromdb(cnxn,sql) table2 = etl.sort(table1,'ShipName') etl.tocsv(table2,'orders_data.csv')
CData Python Connector for Greenplum を使えば、データベースを扱う場合と同感覚で、Greenplum のデータ を扱うことができ、petl のようなETL パッケージから直接データにアクセスが可能になります。
おわりに
Greenplum Python Connector の30日の無償トライアル をぜひダウンロードして、Greenplum のデータ への接続をPython アプリやスクリプトから簡単に作成しましょう。
フルソースコード
import petl as etl
import pandas as pd
import cdata.greenplum as mod
cnxn = mod.connect("User=user;Password=admin;Database=dbname;Server=127.0.0.1;Port=5432;")
sql = "SELECT Freight, ShipName FROM Orders WHERE ShipCountry = 'USA'"
table1 = etl.fromdb(cnxn,sql)
table2 = etl.sort(table1,'ShipName')
etl.tocsv(table2,'orders_data.csv')