Apache Airflow で GMO MakeShop データを連携
Apache Airflow は、データエンジニアリングワークフローの作成、スケジューリング、モニタリングをサポートするツールです。 CData JDBC Driver for GMO MakeShop と組み合わせることで、Airflow からリアルタイムの GMO MakeShop のデータ を扱うことができます。 この記事では、Apache Airflow インスタンスから GMO MakeShop のデータ に接続してクエリを実行し、結果を CSV ファイルに保存する方法を説明します。
CData JDBC ドライバーは、最適化されたデータ処理機能を組み込んでおり、 リアルタイムの GMO MakeShop のデータ を扱う際に比類のないパフォーマンスを発揮します。複雑な SQL クエリを GMO MakeShop に発行すると、 ドライバーはフィルタや集計などのサポートされている SQL 操作を直接 GMO MakeShop にプッシュし、 サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。 また、組み込みの動的メタデータクエリ機能により、ネイティブのデータ型を使用して GMO MakeShop のデータ の操作・分析が可能です。
GMO MakeShop への接続を設定
組み込みの接続文字列デザイナー
JDBC URL の構築には、GMO MakeShop JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。
java -jar cdata.jdbc.gmomakeshop.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
GMO MakeShop に接続するには、MembersAccessCode、OrdersAccessCode、ProductsAccessCode、およびShopId が必要です。
GMO MakeShop へのアクセスの設定
MembersAccessCode、OrdersAccessCode、ProductsAccessCode、およびShopId を取得するには、以下の手順に従ってください。
- GMO MakeShop には各API のAccessCode が必要です。
- GMO MakeShop Store Manager にログインし、メニューの「ショップ作成」をクリックします。
- 左ナビゲーションメニューの「外部システム連携」から任意の連携対象設定ををクリックします(メニューに表示されない場合は別途GMO MakeShop にご確認ください)。
- 商品データ連携設定の場合:認証コードの「発行」ボタンをクリックし、ProductsAccessCode を取得します。
- 注文データ連携設定の場合:最初に「注文情報参照」と「注文情報変更」の設定を選択します。選択後、認証コードの「発行」ボタンをクリックし、OrdersAccessCode を取得します。
- 会員データ連携設定の場合:最初に「会員情報の(参照・登録・変更・削除)」の設定を選択します。選択後、認証コードの「発行」ボタンをクリックし、MembersAccessCode を取得します。
- 会員認証連携設定の場合:認証コードの「発行」ボタンをクリックし、ProductsAccessCode を取得します。
GMO MakeShop アカウントの認証
次の接続プロパティを設定して接続します。
- ShopId:接続先のGMO MakeShop Store ID を設定。GMO MakeShop Store ID はログイン用の ID と同じです。
- OrdersAccessCode:「注文データ連携設定」から取得した「認証コード」を設定。このプロパティは Orders テーブルにアクセスする場合に必要です。
- ProductsAccessCode:「商品データ連携設定」から取得した「認証コード」を設定。このプロパティは Products テーブルにアクセスする場合に必要です。
- MembersAccessCode:「会員データ連携設定」から取得した「認証コード」を設定。このプロパティは Members テーブルにアクセスする場合に必要です。
- MemberAuthenticationCode:「会員認証連携設定」から取得した「認証コード」を設定。このプロパティは MemberAuthenticationConfirm を実行する場合に必要です。
- Password:GMO MakeShop Store Manager のログインユーザーのパスワードを指定。このプロパティは ProductCategoryRegistrationOrModification,ProductMemberGroupPriceRegistrationOrModification,ProductOptionRegistrationOrModification,ProductRegistrationOrModification を実行する場合に必要です。
クラスター環境やクラウドで JDBC ドライバーをホストする場合は、ライセンス(製品版またはトライアル版)とランタイムキー(RTK)が必要です。ライセンス(またはトライアル)の取得については、弊社営業チームにお問い合わせください。
以下は、JDBC 接続に必要な主なプロパティです。
| プロパティ | 値 |
|---|---|
| データベース接続 URL | jdbc:gmomakeshop:RTK=5246...;ShopId=MyShopId;ProductsAccessCode=MyProductsAccessCode;MembersAccessCode=MyMembersAccessCode;OrdersAccessCode=MyOrdersAccessCode; |
| データベースドライバークラス名 | cdata.jdbc.gmomakeshop.GMOMakeShopDriver |
Airflow で JDBC 接続を設定
- Apache Airflow インスタンスにログインします。
- Airflow インスタンスのナビゲーションバーで、Admin にカーソルを合わせ、Connections をクリックします。
- 次の画面で + ボタンをクリックして、新しい接続を作成します。
- Add Connection フォームで、必要な接続プロパティを入力します:
- Connection Id:接続の名前を入力します(例:gmomakeshop_jdbc)
- Connection Type:JDBC Connection
- Connection URL:上記の JDBC 接続 URL(例:jdbc:gmomakeshop:RTK=5246...;ShopId=MyShopId;ProductsAccessCode=MyProductsAccessCode;MembersAccessCode=MyMembersAccessCode;OrdersAccessCode=MyOrdersAccessCode;)
- Driver Class:cdata.jdbc.gmomakeshop.GMOMakeShopDriver
- Driver Path:PATH/TO/cdata.jdbc.gmomakeshop.jar
- フォーム下部の Test ボタンをクリックして、新しい接続をテストします。
- 新しい接続を保存すると、次の画面で接続リストに新しい行が追加されたことを示す緑色のバナーが表示されます。
DAG の作成
Airflow の DAG は、ワークフローのプロセスを保存し、トリガーすることでワークフローを実行できるエンティティです。 ここでのワークフローは、GMO MakeShop のデータ に対して SQL クエリを実行し、結果を CSV ファイルに保存するというシンプルなものです。
- まず、ホームディレクトリに「airflow」フォルダがあるはずです。その中に「dags」という新しいディレクトリを作成します。 ここに Python ファイルを保存すると、UI 上で Airflow DAG として表示されます。
- 次に、新しい Python ファイルを作成し、gmo makeshop_hook.py という名前を付けます。このファイルに以下のコードを挿入してください:
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # DAG を宣言 @dag(dag_id="gmo makeshop_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # DAG 関数を定義 def extract_and_load(): # タスクを定義 @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load() - このファイルを保存し、Airflow インスタンスを更新します。DAG のリストに「gmo makeshop_hook」という新しい DAG が表示されるはずです。
- この DAG をクリックし、次の画面で一時停止スイッチをクリックして青色にオンにします。次に、トリガー(再生)ボタンをクリックして DAG を実行します。これにより、gmo makeshop_hook.py ファイル内の SQL クエリが実行され、コード内で指定したファイルパスに CSV として結果がエクスポートされます。
- 新しい DAG をトリガーした後、Downloads フォルダ(または Python スクリプト内で指定した場所)を確認すると、CSV ファイルが作成されていることがわかります。この例では account.csv です。
- CSV ファイルを開くと、Apache Airflow によって GMO MakeShop のデータ が CSV 形式で利用可能になっていることを確認できます。