CData Connect AI を使用してRelevance AI でリアルタイムの Zuora のデータにアクセスするエージェントを構築
Relevance AI は、自然言語推論を活用した自律的なワークフローを組織が作成できるAI 自動化およびエージェント構築プラットフォームです。ユーザーは、API、データベース、サードパーティシステムと連携して日常のビジネスタスクやデータ操作を完了するエージェントを視覚的に設計できます。
Relevance AI を組み込みのMCP(Model Context Protocol)サーバーを介してCData Connect AI と統合することで、エージェントはリアルタイムでZuora のデータをクエリ、要約、操作できるようになります。この接続により、Relevance AI のインテリジェントなワークフローエンジンとCData Connect AI のガバナンスされたエンタープライズ接続がブリッジされ、すべてのクエリが手動でデータをエクスポートすることなく、承認されたソースに対してセキュアに実行されます。
この記事では、Connect AI で Zuora への接続を設定し、Relevance AI にCData MCP サーバーを登録し、リアルタイムのZuora のデータと連携するエージェントを構築する手順を説明します。
ステップ1:Relevance AI 用に Zuora への接続を設定
Relevance AI から Zuora への接続は、CData Connect AI のリモートMCP サーバーによって実現されます。Relevance AI からZuora のデータを操作するには、まずCData Connect AI で Zuora 接続を作成し設定します。
- Connect AI にログインして「Sources」をクリックし、 Add Connection をクリックします
- Add Connection パネルからZuora を選択します
-
Zuora への接続に必要な認証プロパティを入力します。
Zuora はユーザー認証にOAuth 標準を使用しています。OAuth 認証ついて詳しくは、オンラインヘルプドキュメントを参照してください。
Tenant プロパティの設定
プロバイダへの有効な接続を作成するには、アカウントの設定と合致するテナント値を1つ選択する必要があります。以下は、利用可能なオプションのリストです。- USProduction:リクエストはhttps://rest.zuora.com に送信されます。
- USAPISandbox:リクエストはhttps://rest.apisandbox.zuora.com に送信されます。
- USPerformanceTest:リクエストはhttps://rest.pt1.zuora.com に送信されます。
- EUProduction:リクエストはhttps://rest.eu.zuora.com に送信されます。
- EUSandbox:リクエストはhttps://rest.sandbox.eu.zuora.com に送信されます。
デフォルトではUSProduction テナントを使用します。
Zuora サービスの選択
データクエリとAQuA API の2つのZuora サービスを使用します。デフォルトでは、ZuoraService はAQuADataExport に設定されています。DataQuery
データクエリ機能は、非同期の読み取り専用SQL クエリを実行することで、Zuora テナントからのデータのエクスポートを実現します。 このサービスは、素早く軽量なSQL クエリでの使用を推奨します。制限
- フィルタ適用後の、テーブルごとの入力レコードの最大数: 1,000,000
- 出力レコードの最大数: 100,000
- テナントごとの、実行用に送信される同時クエリの最大数: 5
- テナントごとの、同時クエリの制限に達した後に実行用に送信され、キューに追加されるクエリの最大数: 10
- 1時間単位での、各クエリの最大処理時間: 1
- GB 単位での、各クエリに割り当てられるメモリの最大サイズ: 2
- Index Join を使用する際のインデックスの最大値。言い換えれば、Index Join を使用する際にWHERE 句で使われる一意の値に基づいた、左のテーブルから返されるレコードの最大数: 20.000
AQuADataExport
AQuA API のエクスポートは、すべてのオブジェクト(テーブル)のすべてのレコードをエクスポートするように設計されています。AQuA のクエリジョブには以下の制限があります。制限
- AQuA のジョブ内のクエリが8時間以上実行されている場合、ジョブは自動的に停止されます。
- 停止されたAQuA のジョブは3回再試行可能で、その後失敗として返されます。
- Save & Test をクリックします
- Permissions タブに移動し、ユーザーベースの権限を更新します
Personal Access Token の追加
Personal Access Token(PAT)は、Relevance AI からConnect AI への接続を認証するために使用されます。きめ細かなアクセス制御を維持するために、統合ごとに個別のPAT を作成することをお勧めします。
- Connect AI アプリの右上にある歯車アイコン()をクリックしてSettings を開きます
- Settings ページで「Access Tokens」セクションに移動し、 Create PAT をクリックします
- PAT にわかりやすい名前を付けてCreate をクリックします
- トークンが表示されたらコピーして安全に保存してください。再度表示されることはありません
Zuora 接続の設定とPAT の生成が完了したら、Relevance AI はCData MCP サーバーを介してZuora のデータに接続できるようになります。
ステップ2:Relevance AI で接続を設定
CData Connect AI のMCP エンドポイントと認証情報をRelevance AI に登録して、エージェントがConnect AI からリアルタイムデータを呼び出せるようにします。
- Relevance AI にサインインし、アカウントをお持ちでない場合は作成します
- サイドバーからAgents に移動し、New Agent をクリックします
- Build from scratch を選択し、エージェントに名前を付けます(例:CData MCP Server)
- エージェントエディター内でAdvanced を選択し、MCP Server タブに切り替えます
- + Add Remote MCP Tools をクリックします
- 表示されるダイアログで、以下のようにフィールドを入力します:
- URL: https://mcp.cloud.cdata.com/mcp
- Label: 任意のカスタムラベル(例: cdata_mcp_server)
- Authentication: Custom headers を選択します
- ヘッダーのkey:value ペアを追加します。メールアドレスとPAT をemail:PAT の形式で組み合わせ、その文字列をBase64 でエンコードし、先頭にBasic を付けます
- Key: Authorization
- Value: Basic base64(email:PAT)
Connect をクリックして接続を確立します。Relevance AI が資格情報を検証し、エージェントで使用するためにCData Connect AI MCP サーバーを登録します。
ステップ3:リアルタイムの Zuora のデータを使用してRelevance AI エージェントを構築・実行
- エージェントのRun タブに切り替えます
- タスクを入力します。例:「ServiceNow から最新の5件のインシデントをリストして」
- エージェントがMCP エンドポイント経由でConnect AI にクエリを実行し、Zuora のデータ からのリアルタイム結果を表示します
接続が完了すると、Relevance AI エージェントはCData Connect AI MCP サーバーを介して、リアルタイムのZuora のデータに対してクエリの発行、レコードの取得、AI 駆動のタスクの実行が可能になります。
CData Connect AI の入手
クラウドアプリケーションから300以上のSaaS、Big Data、NoSQL ソースにアクセスするために、CData Connect AI を今すぐお試しください!