SQLAlchemy ORM を使用して Python で Zendesk のデータ にアクセスする方法
Python の豊富なモジュールエコシステムを活用することで、迅速に作業を開始し、システムを効果的に統合できます。CData Python Connector for Zendesk と SQLAlchemy ツールキットを使用して、Zendesk に接続された Python アプリケーションやスクリプトを構築できます。この記事では、SQLAlchemy を使用して Zendesk のデータ に接続し、クエリ、更新、削除、挿入を実行する方法を説明します。
CData Python Connector は最適化されたデータ処理機能を内蔵しており、Python からリアルタイムの Zendesk のデータ を操作する際に比類のないパフォーマンスを提供します。Zendesk に対して複雑な SQL クエリを発行すると、CData Connector はフィルタや集計などのサポートされている SQL 操作を直接 Zendesk にプッシュし、サポートされていない操作(多くの場合 SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。
Zendesk のデータ への接続
Zendesk のデータ への接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。
Zendesk 接続プロパティの取得・設定方法
Zendesk に接続するには、https://{subdomain}.zendesk.com の形式でURL(Zendesk Support URL)を設定します。接続後、次のセクションの説明に従ってユーザー認証を行います。
また、TicketMetrics テーブルのアーカイブデータを扱うユーザーは、UseIncrementalAPI プロパティをTrue に設定する必要があります。
Zendesk への認証
Zendesk は、Zendesk インスタンスの設定に応じて、3種類の認証をサポートします。API トークン認証、OAuth 認証、Basic 認証(レガシー)です。
API トークン認証
API トークン認証を使用する場合は、E メールアドレスとApiToken を指定します。 AuthScheme をAPIToken に、User をE メールアドレスに設定し、Zendesk Support の管理画面で以下の設定を行います。
- Token アクセスを有効にします。
- Admin -> Channels-> API で、API トークンを管理します。一度にアクティブにできるトークンは1つだけです。トークンを削除すると、そのトークンは永久に無効化されます。
その他の認証方法についてはヘルプドキュメントを参照してください。
以下の手順に従って SQLAlchemy をインストールし、Python オブジェクトを通じて Zendesk にアクセスしてみましょう。
必要なモジュールのインストール
pip ユーティリティを使用して、SQLAlchemy ツールキットと SQLAlchemy ORM パッケージをインストールします。
pip install sqlalchemy pip install sqlalchemy.orm
適切なモジュールをインポートします。
from sqlalchemy import create_engine, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker
Python での Zendesk のデータ のモデリング
これで接続文字列を使用して接続できます。create_engine 関数を使用して、Zendesk のデータ を操作するための Engine を作成します。
注意: 接続文字列のプロパティに特殊文字が含まれている場合は、URL エンコードする必要があります。詳細については、SQL Alchemy ドキュメントを参照してください。
engine = create_engine("zendesk:///?URL=https://subdomain.zendesk.com&User=my@email.com&Password=test123")
Zendesk のデータ のマッピングクラスの宣言
接続を確立したら、ORM でモデル化するテーブルのマッピングクラスを宣言します(この記事では、Tickets テーブルをモデル化します)。sqlalchemy.ext.declarative.declarative_base 関数を使用して、一部またはすべてのフィールド(カラム)を定義した新しいクラスを作成します。
base = declarative_base() class Tickets(base): __tablename__ = "Tickets" Id = Column(String,primary_key=True) Subject = Column(String) ...
Zendesk のデータ のクエリ
マッピングクラスを準備したら、セッションオブジェクトを使用してデータソースにクエリを実行できます。Engine をセッションにバインドした後、セッションの query メソッドにマッピングクラスを渡します。
query メソッドの使用
engine = create_engine("zendesk:///?URL=https://subdomain.zendesk.com&User=my@email.com&Password=test123")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Tickets).filter_by(Industry="Floppy Disks"):
print("Id: ", instance.Id)
print("Subject: ", instance.Subject)
print("---------")
別の方法として、適切なテーブルオブジェクトと execute メソッドを使用することもできます。以下のコードはアクティブな session で動作します。
execute メソッドの使用
Tickets_table = Tickets.metadata.tables["Tickets"]
for instance in session.execute(Tickets_table.select().where(Tickets_table.c.Industry == "Floppy Disks")):
print("Id: ", instance.Id)
print("Subject: ", instance.Subject)
print("---------")
JOIN、集計、制限などのより複雑なクエリの例については、拡張機能のヘルプドキュメントを参照してください。
Zendesk のデータ の挿入
Zendesk のデータ を挿入するには、マッピングクラスのインスタンスを定義し、アクティブな session に追加します。セッションの commit 関数を呼び出して、追加されたすべてのインスタンスを Zendesk にプッシュします。
new_rec = Tickets(Id="placeholder", Industry="Floppy Disks") session.add(new_rec) session.commit()
Zendesk のデータ の更新
Zendesk のデータ を更新するには、フィルタクエリで目的のレコードを取得します。次に、フィールドの値を変更し、セッションの commit 関数を呼び出して、変更されたレコードを Zendesk にプッシュします。
updated_rec = session.query(Tickets).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.Industry = "Floppy Disks" session.commit()
Zendesk のデータ の削除
Zendesk のデータ を削除するには、フィルタクエリで目的のレコードを取得します。次に、アクティブな session でレコードを削除し、セッションの commit 関数を呼び出して、指定されたレコード(行)に対して削除操作を実行します。
deleted_rec = session.query(Tickets).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
無料トライアルと詳細情報
CData Python Connector for Zendesk の30日間の無料トライアルをダウンロードして、Zendesk のデータ に接続する Python アプリとスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお問い合わせください。