Apache Airflow で Wave Financial データを連携
Apache Airflow は、データエンジニアリングワークフローの作成、スケジューリング、モニタリングをサポートするツールです。 CData JDBC Driver for Wave Financial と組み合わせることで、Airflow からリアルタイムの Wave Financial のデータ を扱うことができます。 この記事では、Apache Airflow インスタンスから Wave Financial のデータ に接続してクエリを実行し、結果を CSV ファイルに保存する方法を説明します。
CData JDBC ドライバーは、最適化されたデータ処理機能を組み込んでおり、 リアルタイムの Wave Financial のデータ を扱う際に比類のないパフォーマンスを発揮します。複雑な SQL クエリを Wave Financial に発行すると、 ドライバーはフィルタや集計などのサポートされている SQL 操作を直接 Wave Financial にプッシュし、 サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。 また、組み込みの動的メタデータクエリ機能により、ネイティブのデータ型を使用して Wave Financial のデータ の操作・分析が可能です。
Wave Financial への接続を設定
組み込みの接続文字列デザイナー
JDBC URL の構築には、Wave Financial JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。
java -jar cdata.jdbc.wavefinancial.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Wave Financial 接続プロパティの取得・設定方法
Wave Financial は、データに接続する手段として、API トークンを指定する方法とOAuth 認証情報を使用する方法の2つを提供しています。
API トークン
Wave Financial API トークンを取得するには:
- Wave Financial アカウントにログインします。
- 左ペインのManage Applications に移動します。
- トークンを作成するアプリケーションを選択します。最初にアプリケーションを作成する必要がある場合があります。
- API トークンを生成するには、Create token をクリックします。
OAuth
Wave Financial はOAuth 認証のみサポートします。すべてのOAuth フローで、この認証を有効にするにはAuthScheme をOAuth に設定する必要があります。ヘルプドキュメントでは、以下の3つの一般的な認証フローでのWave Financial への認証について詳しく説明しています。
- デスクトップ:ユーザーのローカルマシン上でのサーバーへの接続で、テストやプロトタイピングによく使用されます。組み込みOAuth またはカスタムOAuth で認証されます。
- Web:共有ウェブサイト経由でデータにアクセスします。カスタムOAuth でのみ認証されます。
- ヘッドレスサーバー:他のコンピュータやそのユーザーにサービスを提供する専用コンピュータで、モニタやキーボードなしで動作するように構成されています。組み込みOAuth またはカスタムOAuth で認証されます。
カスタムOAuth アプリケーションの作成についての情報と、組み込みOAuth 認証情報を持つ認証フローでもカスタムOAuth アプリケーションを作成したほうがよい場合の説明については、ヘルプドキュメント の「カスタムOAuth アプリケーションの作成」セクションを参照してください。
クラスター環境やクラウドで JDBC ドライバーをホストする場合は、ライセンス(製品版またはトライアル版)とランタイムキー(RTK)が必要です。ライセンス(またはトライアル)の取得については、弊社営業チームにお問い合わせください。
以下は、JDBC 接続に必要な主なプロパティです。
| プロパティ | 値 |
|---|---|
| データベース接続 URL | jdbc:wavefinancial:RTK=5246...; |
| データベースドライバークラス名 | cdata.jdbc.wavefinancial.WaveFinancialDriver |
Airflow で JDBC 接続を設定
- Apache Airflow インスタンスにログインします。
- Airflow インスタンスのナビゲーションバーで、Admin にカーソルを合わせ、Connections をクリックします。
- 次の画面で + ボタンをクリックして、新しい接続を作成します。
- Add Connection フォームで、必要な接続プロパティを入力します:
- Connection Id:接続の名前を入力します(例:wavefinancial_jdbc)
- Connection Type:JDBC Connection
- Connection URL:上記の JDBC 接続 URL(例:jdbc:wavefinancial:RTK=5246...;)
- Driver Class:cdata.jdbc.wavefinancial.WaveFinancialDriver
- Driver Path:PATH/TO/cdata.jdbc.wavefinancial.jar
- フォーム下部の Test ボタンをクリックして、新しい接続をテストします。
- 新しい接続を保存すると、次の画面で接続リストに新しい行が追加されたことを示す緑色のバナーが表示されます。
DAG の作成
Airflow の DAG は、ワークフローのプロセスを保存し、トリガーすることでワークフローを実行できるエンティティです。 ここでのワークフローは、Wave Financial のデータ に対して SQL クエリを実行し、結果を CSV ファイルに保存するというシンプルなものです。
- まず、ホームディレクトリに「airflow」フォルダがあるはずです。その中に「dags」という新しいディレクトリを作成します。 ここに Python ファイルを保存すると、UI 上で Airflow DAG として表示されます。
- 次に、新しい Python ファイルを作成し、wave financial_hook.py という名前を付けます。このファイルに以下のコードを挿入してください:
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # DAG を宣言 @dag(dag_id="wave financial_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # DAG 関数を定義 def extract_and_load(): # タスクを定義 @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load() - このファイルを保存し、Airflow インスタンスを更新します。DAG のリストに「wave financial_hook」という新しい DAG が表示されるはずです。
- この DAG をクリックし、次の画面で一時停止スイッチをクリックして青色にオンにします。次に、トリガー(再生)ボタンをクリックして DAG を実行します。これにより、wave financial_hook.py ファイル内の SQL クエリが実行され、コード内で指定したファイルパスに CSV として結果がエクスポートされます。
- 新しい DAG をトリガーした後、Downloads フォルダ(または Python スクリプト内で指定した場所)を確認すると、CSV ファイルが作成されていることがわかります。この例では account.csv です。
- CSV ファイルを開くと、Apache Airflow によって Wave Financial のデータ が CSV 形式で利用可能になっていることを確認できます。