SQLAlchemy ORM を使用して Python で Sage 300 のデータ にアクセスする方法
Python の豊富なモジュールエコシステムを活用することで、迅速に作業を開始し、システムを効果的に統合できます。CData Python Connector for Sage 300 と SQLAlchemy ツールキットを使用して、Sage 300 に接続された Python アプリケーションやスクリプトを構築できます。この記事では、SQLAlchemy を使用して Sage 300 のデータ に接続し、クエリを実行する方法を説明します。
CData Python Connector は最適化されたデータ処理機能を内蔵しており、Python からリアルタイムの Sage 300 のデータ を操作する際に比類のないパフォーマンスを提供します。Sage 300 に対して複雑な SQL クエリを発行すると、CData Connector はフィルタや集計などのサポートされている SQL 操作を直接 Sage 300 にプッシュし、サポートされていない操作(多くの場合 SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。
Sage 300 のデータ への接続
Sage 300 のデータ への接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。
Sage 300 には、Sage 300 Web API で通信するための初期設定が必要となるます。
- Sage 300 のユーザー向けのセキュリティグループを設定します。Sage 300 のユーザーに、Security Groups の下にあるbSage 300 Web API オプションへのアクセスを付与します(各モジュール毎に必要です)。
- /Online/Web と/Online/WebApi フォルダ内のweb.config ファイルを両方編集して、AllowWebApiAccessForAdmin のキーを true 設定します。webAPI アプリプールを再起動すると設定が反映されます。
- ユーザーアクセスを設定したら、https://server/Sage300WebApi/ をクリックして、web API へのアクセスを確認してください。
Basic 認証を使用してSage 300 へ認証します。
Basic 認証を使用して接続する
Sage 300 に認証するには、次のプロパティを入力してください。プロバイダーは、クッキーを使用してSage 300 が開いたセッションを再利用することに注意してください。 そのため、資格情報はセッションを開く最初のリクエストでのみ使用されます。その後は、Sage 300 が返すクッキーを認証に使用します。
- Url:Sage 300 をホストするサーバーのURL に設定します。Sage 300 Web API 用のURL を次のように作成してください。 {protocol}://{host-application-path}/v{version}/{tenant}/ 例えば、 http://localhost/Sage300WebApi/v1.0/-/ です。
- User:アカウントのユーザー名に設定します。
- Password:アカウントのパスワードに設定します。
以下の手順に従って SQLAlchemy をインストールし、Python オブジェクトを通じて Sage 300 にアクセスしてみましょう。
必要なモジュールのインストール
pip ユーティリティを使用して、SQLAlchemy ツールキットと SQLAlchemy ORM パッケージをインストールします。
pip install sqlalchemy pip install sqlalchemy.orm
適切なモジュールをインポートします。
from sqlalchemy import create_engine, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker
Python での Sage 300 のデータ のモデリング
これで接続文字列を使用して接続できます。create_engine 関数を使用して、Sage 300 のデータ を操作するための Engine を作成します。
注意: 接続文字列のプロパティに特殊文字が含まれている場合は、URL エンコードする必要があります。詳細については、SQL Alchemy ドキュメントを参照してください。
engine = create_engine("sage300:///?User=SAMPLE&Password=password&URL=http://127.0.0.1/Sage300WebApi/v1/-/&Company=SAMINC")
Sage 300 のデータ のマッピングクラスの宣言
接続を確立したら、ORM でモデル化するテーブルのマッピングクラスを宣言します(この記事では、OEInvoices テーブルをモデル化します)。sqlalchemy.ext.declarative.declarative_base 関数を使用して、一部またはすべてのフィールド(カラム)を定義した新しいクラスを作成します。
base = declarative_base() class OEInvoices(base): __tablename__ = "OEInvoices" InvoiceUniquifier = Column(String,primary_key=True) ApprovedLimit = Column(String) ...
Sage 300 のデータ のクエリ
マッピングクラスを準備したら、セッションオブジェクトを使用してデータソースにクエリを実行できます。Engine をセッションにバインドした後、セッションの query メソッドにマッピングクラスを渡します。
query メソッドの使用
engine = create_engine("sage300:///?User=SAMPLE&Password=password&URL=http://127.0.0.1/Sage300WebApi/v1/-/&Company=SAMINC")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(OEInvoices).filter_by(AllowPartialShipments="Yes"):
print("InvoiceUniquifier: ", instance.InvoiceUniquifier)
print("ApprovedLimit: ", instance.ApprovedLimit)
print("---------")
別の方法として、適切なテーブルオブジェクトと execute メソッドを使用することもできます。以下のコードはアクティブな session で動作します。
execute メソッドの使用
OEInvoices_table = OEInvoices.metadata.tables["OEInvoices"]
for instance in session.execute(OEInvoices_table.select().where(OEInvoices_table.c.AllowPartialShipments == "Yes")):
print("InvoiceUniquifier: ", instance.InvoiceUniquifier)
print("ApprovedLimit: ", instance.ApprovedLimit)
print("---------")
JOIN、集計、制限などのより複雑なクエリの例については、拡張機能のヘルプドキュメントを参照してください。
無料トライアルと詳細情報
CData Python Connector for Sage 300 の30日間の無料トライアルをダウンロードして、Sage 300 のデータ に接続する Python アプリとスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお問い合わせください。