Apache Airflow で REST データを連携
Apache Airflow は、データエンジニアリングワークフローの作成、スケジューリング、モニタリングをサポートするツールです。 CData JDBC Driver for REST と組み合わせることで、Airflow からリアルタイムの REST のデータ を扱うことができます。 この記事では、Apache Airflow インスタンスから REST のデータ に接続してクエリを実行し、結果を CSV ファイルに保存する方法を説明します。
CData JDBC ドライバーは、最適化されたデータ処理機能を組み込んでおり、 リアルタイムの REST のデータ を扱う際に比類のないパフォーマンスを発揮します。複雑な SQL クエリを REST に発行すると、 ドライバーはフィルタや集計などのサポートされている SQL 操作を直接 REST にプッシュし、 サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。 また、組み込みの動的メタデータクエリ機能により、ネイティブのデータ型を使用して REST のデータ の操作・分析が可能です。
REST への接続を設定
組み込みの接続文字列デザイナー
JDBC URL の構築には、REST JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。
java -jar cdata.jdbc.rest.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
データソースへの認証については、データプロバイダーのヘルプドキュメントの「はじめに」を参照してください: データプロバイダーはREST API を双方向データベーステーブルとして、XML/JSON ファイル(ローカルファイル、一般的なクラウドサービスに保存されているファイル、FTP サーバー)を読み取り専用のビューとしてモデル化します。HTTP Basic、Digest、NTLM、OAuth、FTP などの主要な認証スキームがサポートされています。認証についての詳細は、ヘルプドキュメントの「はじめに」を参照してください。
URI を設定し、認証値を指定したら、Format を"XML" または"JSON" に設定して、データ表現をデータ構造により厳密に一致させるようにDataModel を設定します。
DataModel プロパティは、データをどのようにテーブルに表現するかを制御するプロパティで、以下の基本的な設定を切り替えます。
- Document (デフォルト):REST データのトップレベルのドキュメントビューをモデル化します。データプロバイダーはネストされたエレメントをデータの集計として返します。
- FlattenedDocuments:ネストされたドキュメントとその親を単一テーブルとして暗黙的に結合します。
- Relational:階層データから個々の関連テーブルを返します。テーブルには、親ドキュメントにリンクする主キーと外部キーが含まれます。
リレーショナル表現の構成について詳しくは、「REST データのモデル化」を参照してください。次の例で使用されているサンプルデータもあります。データには、人、所有している車、およびそれらの車で行われたさまざまなメンテナンスサービスのエントリが含まれています。The data includes entries for people, the cars they own, and various maintenance services performed on those cars.
クラスター環境やクラウドで JDBC ドライバーをホストする場合は、ライセンス(製品版またはトライアル版)とランタイムキー(RTK)が必要です。ライセンス(またはトライアル)の取得については、弊社営業チームにお問い合わせください。
以下は、JDBC 接続に必要な主なプロパティです。
| プロパティ | 値 |
|---|---|
| データベース接続 URL | jdbc:rest:RTK=5246...;DataModel=Relational;URI=C:/people.xml;Format=XML; |
| データベースドライバークラス名 | cdata.jdbc.rest.RESTDriver |
Airflow で JDBC 接続を設定
- Apache Airflow インスタンスにログインします。
- Airflow インスタンスのナビゲーションバーで、Admin にカーソルを合わせ、Connections をクリックします。
- 次の画面で + ボタンをクリックして、新しい接続を作成します。
- Add Connection フォームで、必要な接続プロパティを入力します:
- Connection Id:接続の名前を入力します(例:rest_jdbc)
- Connection Type:JDBC Connection
- Connection URL:上記の JDBC 接続 URL(例:jdbc:rest:RTK=5246...;DataModel=Relational;URI=C:/people.xml;Format=XML;)
- Driver Class:cdata.jdbc.rest.RESTDriver
- Driver Path:PATH/TO/cdata.jdbc.rest.jar
- フォーム下部の Test ボタンをクリックして、新しい接続をテストします。
- 新しい接続を保存すると、次の画面で接続リストに新しい行が追加されたことを示す緑色のバナーが表示されます。
DAG の作成
Airflow の DAG は、ワークフローのプロセスを保存し、トリガーすることでワークフローを実行できるエンティティです。 ここでのワークフローは、REST のデータ に対して SQL クエリを実行し、結果を CSV ファイルに保存するというシンプルなものです。
- まず、ホームディレクトリに「airflow」フォルダがあるはずです。その中に「dags」という新しいディレクトリを作成します。 ここに Python ファイルを保存すると、UI 上で Airflow DAG として表示されます。
- 次に、新しい Python ファイルを作成し、rest_hook.py という名前を付けます。このファイルに以下のコードを挿入してください:
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # DAG を宣言 @dag(dag_id="rest_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # DAG 関数を定義 def extract_and_load(): # タスクを定義 @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load() - このファイルを保存し、Airflow インスタンスを更新します。DAG のリストに「rest_hook」という新しい DAG が表示されるはずです。
- この DAG をクリックし、次の画面で一時停止スイッチをクリックして青色にオンにします。次に、トリガー(再生)ボタンをクリックして DAG を実行します。これにより、rest_hook.py ファイル内の SQL クエリが実行され、コード内で指定したファイルパスに CSV として結果がエクスポートされます。
- 新しい DAG をトリガーした後、Downloads フォルダ(または Python スクリプト内で指定した場所)を確認すると、CSV ファイルが作成されていることがわかります。この例では account.csv です。
- CSV ファイルを開くと、Apache Airflow によって REST のデータ が CSV 形式で利用可能になっていることを確認できます。