Mastra と Paylocity のデータを CData Connect AI MCP サーバーで統合
Mastra は、インテリジェントで構成可能な AI エージェントを構築する開発者やエンタープライズチーム向けに設計されています。そのモジュラーフレームワークと宣言的なアーキテクチャにより、エージェントのオーケストレーション、LLM との統合、データ駆動ワークフローの自動化が簡単になります。しかし、エージェントがローカルメモリや事前定義された API を超えたデータを操作する必要がある場合、多くの実装はカスタムミドルウェアやスケジュールされた同期に依存して、外部システムからローカルストアにデータをコピーします。このアプローチは複雑さを増し、メンテナンスの負担を増加させ、レイテンシを導入し、エージェントのリアルタイムの可能性を制限します。
CData Connect AI は、300 以上のエンタープライズアプリケーション、データベース、ERP、分析プラットフォームへのライブな直接接続でこのギャップを埋めます。CData のリモート Model Context Protocol(MCP)サーバーを通じて、Mastra エージェントはレプリケーションなしにリアルタイムデータをセキュアにクエリ、読み取り、操作できます。結果として、グラウンドされたレスポンス、高速な推論、システム全体での自動化された意思決定が実現し、ガバナンスが強化され、可動部品が削減されます。
この記事では、CData Connect AI MCP 接続を設定し、Mastra Studio で MCP サーバーを登録し、リアルタイムの Paylocity データをクエリするエージェントを構築するために必要な手順を説明します。
前提条件
始める前に、以下を準備してください:
- CData Connect AI アカウント
- Node.js 18 以上と npm がインストールされていること
- 動作する Mastra プロジェクト(npm create mastra@latest で作成)
- Paylocity へのアクセス
認証情報チェックリスト
接続に必要な以下の認証情報を準備してください:
- USERNAME: CData のメールログイン
- PAT: Connect AI で Settings にアクセスし Access Tokens をクリック(一度だけコピー可能)
- MCP_BASE_URL: https://mcp.cloud.cdata.com/mcp
ステップ1:Mastra 用の Paylocity 接続を設定
Mastra から Paylocity への接続は、CData Connect AI のリモート MCP を通じて実現できます。Mastra からPaylocity のデータを操作するには、まず CData Connect AI で Paylocity 接続を作成・設定します。
- Connect AI にログインして「Sources」をクリック、次に「 Add Connection」をクリック
- 接続を追加パネルから「Paylocity」を選択
-
Paylocity に接続するために必要な認証プロパティを入力します。
Paylocity への接続を確立するには以下を設定します。
- RSAPublicKey:Paylocity アカウントでRSA 暗号化が有効になっている場合は、Paylocity に関連付けられたRSA キーを設定。
このプロパティは、Insert およびUpdate ステートメントを実行するために必須です。この機能が無効になっている場合は必須ではありません。
- UseSandbox:サンドボックスアカウントを使用する場合はTrue に設定。
- CustomFieldsCategory:Customfields カテゴリに設定。これは、IncludeCustomFields がtrue に設定されている場合は必須です。デフォルト値はPayrollAndHR です。
- Key:Paylocity の公開鍵で暗号化されたAES 共通鍵(base 64 エンコード)。これはコンテンツを暗号化するためのキーです。
Paylocity は、RSA 復号化を使用してAES 鍵を復号化します。
これはオプションのプロパティで、IV の値が指定されていない場合、ドライバーは内部でキーを生成します。 - IV:コンテンツを暗号化するときに使用するAES IV(base 64 エンコード)。これはオプションのプロパティで、Key の値が指定されていない場合、ドライバーは内部でIV を生成します。
OAuth
OAuth を使用してPaylocity で認証する必要があります。OAuth では認証するユーザーにブラウザでPaylocity との通信を要求します。詳しくは、ヘルプドキュメントのOAuth セクションを参照してください。
Pay Entry API
Pay Entry API はPaylocity API の他の部分と完全に分離されています。個別のクライアントID とシークレットを使用し、アカウントへのアクセスを許可するにはPaylocity から明示的にリクエストする必要があります。 Pay Entry API を使用すると、個々の従業員の給与情報を自動的に送信できます。 Pay Entry API によって提供されるものの性質が非常に限られているため、CData では個別のスキーマを提供しないことを選択しましたが、UsePayEntryAPI 接続プロパティを介して有効にできます。
UsePayEntryAPI をtrue に設定する場合は、CreatePayEntryImportBatch、MergePayEntryImportBatch、Input_TimeEntry、およびOAuth ストアドプロシージャのみ利用できることに注意してください。 製品のその他の機能を使用しようとするとエラーが発生します。また、OAuthAccessToken を個別に保存する必要があります。これは、この接続プロパティを使用するときに異なるOAuthSettingsLocation を設定することを意味します。
- RSAPublicKey:Paylocity アカウントでRSA 暗号化が有効になっている場合は、Paylocity に関連付けられたRSA キーを設定。
- 「Save & Test」をクリック
-
Paylocity 接続の追加ページで「Permissions」タブに移動し、ユーザーベースの権限を更新します。
パーソナルアクセストークンの追加
パーソナルアクセストークン(PAT)は、Mastra から Connect AI への接続を認証するために使用されます。アクセスを細かく管理するため、サービスごとに個別の PAT を作成することをお勧めします。
- Connect AI アプリの右上にある歯車アイコン()をクリックして設定ページを開きます。
- 設定ページで「Access Tokens」セクションに移動し、「 Create PAT」をクリックします。
-
PAT に名前を付けて「Create」をクリックします。
- パーソナルアクセストークンは作成時にのみ表示されるため、必ずコピーして今後の使用に備えて安全に保管してください。
接続が設定され PAT が生成されたので、Mastra からPaylocity のデータに接続する準備が整いました。
ステップ2:Mastra プロジェクトをセットアップ
- ターミナルを開き、目的のフォルダに移動します
- 新しいプロジェクトを作成します:
npm create mastra@latest
- VS Code でフォルダを開きます
- 必要な Mastra 依存関係をインストールします:
npm install @mastra/core @mastra/libsql @mastra/memory
- 次に MCP 統合パッケージを個別にインストールします:
npm install @mastra/mcp
ステップ3:環境変数を設定
プロジェクトルートに以下のキーを含む .env ファイルを作成します:
OPENAI_API_KEY=sk-... CDATA_CONNECT_AI_USER=your@email.com CDATA_CONNECT_AI_PASSWORD=your_PAT
変更を保存した後、開発サーバーを再起動します:
npm run dev
ステップ4:CData Connect AI エージェントを追加
以下のコードで src/mastra/agents/connect-ai-agent.ts ファイルを作成します:
import { Agent } from "@mastra/core/agent";
import { Memory } from "@mastra/memory";
import { LibSQLStore } from "@mastra/libsql";
import { MCPClient } from "@mastra/mcp";
const mcpClient = new MCPClient({
servers: {
cdataConnectAI: {
url: new URL("https://connect.cdata.com/mcp/"),
requestInit: {
headers: {
Authorization: `Basic ${Buffer.from(
`${process.env.CDATA_CONNECT_AI_USER}:${process.env.CDATA_CONNECT_AI_PASSWORD}`
).toString("base64")}`,
},
},
},
},
});
export const connectAIAgent = new Agent({
name: "Connect AI Agent",
instructions: "You are a data exploration and analysis assistant with access to CData Connect AI.",
model: "openai/gpt-4o-mini",
tools: await mcpClient.getTools(),
memory: new Memory({
storage: new LibSQLStore({ url: "file:../mastra.db" }),
}),
});
ステップ5:index.ts を更新してエージェントを登録
src/mastra/index.ts の内容を以下に置き換えます:
import { Mastra } from "@mastra/core/mastra";
import { PinoLogger } from "@mastra/loggers";
import { LibSQLStore } from "@mastra/libsql";
import { connectAIAgent } from "./agents/connect-ai-agent.js";
export const mastra = new Mastra({
agents: { connectAIAgent },
storage: new LibSQLStore({ url: "file:../mastra.db" }),
logger: new PinoLogger({ name: "Mastra", level: "info" }),
observability: { default: { enabled: true } },
});
ステップ6:接続を実行して確認
Mastra サーバーを起動します:
npm run dev
ステップ7:Mastra Studio でライブクエリを実行
Mastra Studio でチャットインターフェースを開き、以下のサンプルプロンプトを入力します:
接続されたデータソースから利用可能なカタログを一覧表示してください。
Mastra と CData でリアルタイムのデータ対応エージェントを構築
Mastra と CData Connect AI を組み合わせることで、エージェントがエンタープライズデータにライブアクセスし、同期パイプラインや手動の統合ロジックなしにインテリジェントに動作する強力な AI 駆動ワークフローが実現できます。
無料トライアルを開始して、CData が Mastra に 300 以上の外部システムへのライブでセキュアなアクセスを提供する方法をぜひご確認ください。