SQLAlchemy ORM を使用して Python で Odoo のデータ にアクセスする方法
Python の豊富なモジュールエコシステムを活用することで、迅速に作業を開始し、システムを効果的に統合できます。CData Python Connector for Odoo と SQLAlchemy ツールキットを使用して、Odoo に接続された Python アプリケーションやスクリプトを構築できます。この記事では、SQLAlchemy を使用して Odoo のデータ に接続し、クエリ、更新、削除、挿入を実行する方法を説明します。
CData Python Connector は最適化されたデータ処理機能を内蔵しており、Python からリアルタイムの Odoo のデータ を操作する際に比類のないパフォーマンスを提供します。Odoo に対して複雑な SQL クエリを発行すると、CData Connector はフィルタや集計などのサポートされている SQL 操作を直接 Odoo にプッシュし、サポートされていない操作(多くの場合 SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。
Odoo データ連携について
CData を使用すれば、Odoo のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:
- Odoo API 8.0+ と Odoo.sh クラウド ERP の両方からライブデータにアクセスできます。
-
多対一、一対多、多対多のデータプロパティをインテリジェントに処理することで、ネイティブの Odoo 機能を拡張できます。CData の接続ソリューションは、Odoo 内の複雑なデータプロパティもインテリジェントに処理します。テキストや日付などの単純な値を持つカラムに加えて、各行に複数の値を含むカラムもあります。ドライバーは、値の元となるカラムのタイプに応じて、これらの種類の値を異なる方法でデコードします:
- 多対一カラムは、別のモデル内の単一の行への参照です。CData ソリューションでは、多対一カラムは整数として表され、その値は他のモデルで参照している ID です。
- 多対多カラムは、別のモデル内の多くの行への参照です。CData ソリューションでは、多対多カラムはカンマ区切りの整数リストを含むテキストとして表されます。リスト内の各値は、参照されている行の ID です。
- 一対多カラムは、別のモデル内の多くの行への参照です。多対多カラムと同様(カンマ区切りの整数リスト)ですが、参照されるモデルの各行はメインモデルの 1 つにのみ属する必要があります。
- SQL ストアドプロシージャを使用して、Odoo 内のサーバーサイド RFC を呼び出すことができます。
ユーザーは、Power BI や Qlik Sense などの分析ツールと Odoo を統合し、当社のツールを活用して Odoo データをデータベースやデータウェアハウスにレプリケートしています。
はじめに
Odoo のデータ への接続
Odoo のデータ への接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。
接続するには、URL にOdoo インスタンスURL、User およびAPIToken にユーザー資格情報、Database にOdoo データベース名を設定します。 API トークン(Odoo 14 以降でのみ利用可能)を使用していない場合、代わりにAPIToken フィールドにパスワードを直接入力することができます。
接続方法の詳細は、ヘルプドキュメントの「はじめに」セクションを参照してください。
以下の手順に従って SQLAlchemy をインストールし、Python オブジェクトを通じて Odoo にアクセスしてみましょう。
必要なモジュールのインストール
pip ユーティリティを使用して、SQLAlchemy ツールキットと SQLAlchemy ORM パッケージをインストールします。
pip install sqlalchemy pip install sqlalchemy.orm
適切なモジュールをインポートします。
from sqlalchemy import create_engine, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker
Python での Odoo のデータ のモデリング
これで接続文字列を使用して接続できます。create_engine 関数を使用して、Odoo のデータ を操作するための Engine を作成します。
注意: 接続文字列のプロパティに特殊文字が含まれている場合は、URL エンコードする必要があります。詳細については、SQL Alchemy ドキュメントを参照してください。
engine = create_engine("odoo:///?User=MyUser&APIToken=MyToken&URL=http://MyOdooSite/&Database=MyDatabase")
Odoo のデータ のマッピングクラスの宣言
接続を確立したら、ORM でモデル化するテーブルのマッピングクラスを宣言します(この記事では、res_users テーブルをモデル化します)。sqlalchemy.ext.declarative.declarative_base 関数を使用して、一部またはすべてのフィールド(カラム)を定義した新しいクラスを作成します。
base = declarative_base() class res_users(base): __tablename__ = "res_users" name = Column(String,primary_key=True) email = Column(String) ...
Odoo のデータ のクエリ
マッピングクラスを準備したら、セッションオブジェクトを使用してデータソースにクエリを実行できます。Engine をセッションにバインドした後、セッションの query メソッドにマッピングクラスを渡します。
query メソッドの使用
engine = create_engine("odoo:///?User=MyUser&APIToken=MyToken&URL=http://MyOdooSite/&Database=MyDatabase")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(res_users).filter_by(id="1"):
print("name: ", instance.name)
print("email: ", instance.email)
print("---------")
別の方法として、適切なテーブルオブジェクトと execute メソッドを使用することもできます。以下のコードはアクティブな session で動作します。
execute メソッドの使用
res_users_table = res_users.metadata.tables["res_users"]
for instance in session.execute(res_users_table.select().where(res_users_table.c.id == "1")):
print("name: ", instance.name)
print("email: ", instance.email)
print("---------")
JOIN、集計、制限などのより複雑なクエリの例については、拡張機能のヘルプドキュメントを参照してください。
Odoo のデータ の挿入
Odoo のデータ を挿入するには、マッピングクラスのインスタンスを定義し、アクティブな session に追加します。セッションの commit 関数を呼び出して、追加されたすべてのインスタンスを Odoo にプッシュします。
new_rec = res_users(name="placeholder", id="1") session.add(new_rec) session.commit()
Odoo のデータ の更新
Odoo のデータ を更新するには、フィルタクエリで目的のレコードを取得します。次に、フィールドの値を変更し、セッションの commit 関数を呼び出して、変更されたレコードを Odoo にプッシュします。
updated_rec = session.query(res_users).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.id = "1" session.commit()
Odoo のデータ の削除
Odoo のデータ を削除するには、フィルタクエリで目的のレコードを取得します。次に、アクティブな session でレコードを削除し、セッションの commit 関数を呼び出して、指定されたレコード(行)に対して削除操作を実行します。
deleted_rec = session.query(res_users).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
無料トライアルと詳細情報
CData Python Connector for Odoo の30日間の無料トライアルをダウンロードして、Odoo のデータ に接続する Python アプリとスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお問い合わせください。