SQLAlchemy ORM を使用して Python で MongoDB のデータ にアクセスする方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
SQLAlchemy オブジェクトリレーショナルマッピングを使用して、MongoDB のデータ を操作する Python アプリケーションとスクリプトを作成します。

Python の豊富なモジュールエコシステムを活用することで、迅速に作業を開始し、システムを効果的に統合できます。CData Python Connector for MongoDB と SQLAlchemy ツールキットを使用して、MongoDB に接続された Python アプリケーションやスクリプトを構築できます。この記事では、SQLAlchemy を使用して MongoDB のデータ に接続し、クエリ、更新、削除、挿入を実行する方法を説明します。

CData Python Connector は最適化されたデータ処理機能を内蔵しており、Python からリアルタイムの MongoDB のデータ を操作する際に比類のないパフォーマンスを提供します。MongoDB に対して複雑な SQL クエリを発行すると、CData Connector はフィルタや集計などのサポートされている SQL 操作を直接 MongoDB にプッシュし、サポートされていない操作(多くの場合 SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。

MongoDB データ連携について

CData を使用すれば、MongoDB のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:

  • MongoDB 2.6 以降のデータにアクセスでき、さまざまな MongoDB バージョンで幅広く使用できます。
  • 柔軟な NoSQL により、非構造化データを簡単に管理できます(詳細はこちら:NoSQL 統合のための最先端ドライバー)。
  • 他の NoSQL ドライバーに対する機能的な優位性を活用し、MongoDB データを扱う際の機能的なメリットを実現できます(詳細はこちら:NoSQL 向けドライバーの機能比較)。

MongoDB の柔軟性により、トランザクション、オペレーション、または分析データベースとして使用できます。つまり、CData のお客様は、ビジネスデータを MongoDB に統合したり、MongoDB データをデータウェアハウスに統合したり(またはその両方)するために当社のソリューションを使用しています。また、Power BI や Tableau などのお気に入りのツールから MongoDB を直接分析・レポートするために、当社のライブ接続オプションを活用しているお客様もいます。

MongoDB のユースケースと CData が MongoDB 体験をどのように向上させるかについての詳細は、ブログ記事をご覧ください:The Top 10 Real-World MongoDB Use Cases You Should Know in 2024


はじめに


MongoDB のデータ への接続

MongoDB のデータ への接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。

MongoDB への接続には、Server、Database、User、Password プロパティを設定します。MongoDB コレクションにテーブルとしてアクセスするには、自動スキーマ検出を使用することができます。もちろんスキーマ定義の.rsd ファイルを編集して自分でスキーマ定義を書くことも可能です。スキーマに縛られないフリーフォーマットクエリを投げることもできます。

以下の手順に従って SQLAlchemy をインストールし、Python オブジェクトを通じて MongoDB にアクセスしてみましょう。

必要なモジュールのインストール

pip ユーティリティを使用して、SQLAlchemy ツールキットと SQLAlchemy ORM パッケージをインストールします。

pip install sqlalchemy
pip install sqlalchemy.orm

適切なモジュールをインポートします。

from sqlalchemy import create_engine, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

Python での MongoDB のデータ のモデリング

これで接続文字列を使用して接続できます。create_engine 関数を使用して、MongoDB のデータ を操作するための Engine を作成します。

注意: 接続文字列のプロパティに特殊文字が含まれている場合は、URL エンコードする必要があります。詳細については、SQL Alchemy ドキュメントを参照してください。

engine = create_engine("mongodb:///?Server=MyServer&Port=27017&Database=test&User=test&Password=Password")

MongoDB のデータ のマッピングクラスの宣言

接続を確立したら、ORM でモデル化するテーブルのマッピングクラスを宣言します(この記事では、restaurants テーブルをモデル化します)。sqlalchemy.ext.declarative.declarative_base 関数を使用して、一部またはすべてのフィールド(カラム)を定義した新しいクラスを作成します。

base = declarative_base()
class restaurants(base):
	__tablename__ = "restaurants"
	borough = Column(String,primary_key=True)
	cuisine = Column(String)
	...

MongoDB のデータ のクエリ

マッピングクラスを準備したら、セッションオブジェクトを使用してデータソースにクエリを実行できます。Engine をセッションにバインドした後、セッションの query メソッドにマッピングクラスを渡します。

query メソッドの使用

engine = create_engine("mongodb:///?Server=MyServer&Port=27017&Database=test&User=test&Password=Password")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(restaurants).filter_by(Name="Morris Park Bake Shop"):
	print("borough: ", instance.borough)
	print("cuisine: ", instance.cuisine)
	print("---------")

別の方法として、適切なテーブルオブジェクトと execute メソッドを使用することもできます。以下のコードはアクティブな session で動作します。

execute メソッドの使用

restaurants_table = restaurants.metadata.tables["restaurants"]
for instance in session.execute(restaurants_table.select().where(restaurants_table.c.Name == "Morris Park Bake Shop")):
	print("borough: ", instance.borough)
	print("cuisine: ", instance.cuisine)
	print("---------")

JOIN、集計、制限などのより複雑なクエリの例については、拡張機能のヘルプドキュメントを参照してください。

MongoDB のデータ の挿入

MongoDB のデータ を挿入するには、マッピングクラスのインスタンスを定義し、アクティブな session に追加します。セッションの commit 関数を呼び出して、追加されたすべてのインスタンスを MongoDB にプッシュします。

new_rec = restaurants(borough="placeholder", Name="Morris Park Bake Shop")
session.add(new_rec)
session.commit()

MongoDB のデータ の更新

MongoDB のデータ を更新するには、フィルタクエリで目的のレコードを取得します。次に、フィールドの値を変更し、セッションの commit 関数を呼び出して、変更されたレコードを MongoDB にプッシュします。

updated_rec = session.query(restaurants).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.Name = "Morris Park Bake Shop"
session.commit()

MongoDB のデータ の削除

MongoDB のデータ を削除するには、フィルタクエリで目的のレコードを取得します。次に、アクティブな session でレコードを削除し、セッションの commit 関数を呼び出して、指定されたレコード(行)に対して削除操作を実行します。

deleted_rec = session.query(restaurants).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

無料トライアルと詳細情報

CData Python Connector for MongoDB の30日間の無料トライアルをダウンロードして、MongoDB のデータ に接続する Python アプリとスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお問い合わせください。

はじめる準備はできましたか?

MongoDB Connector のコミュニティライセンスをダウンロード:

 ダウンロード

詳細:

MongoDB Icon MongoDB Python Connector お問い合わせ

MongoDB へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにMongoDB をシームレスに統合。