SQLAlchemy ORM を使用して Python で Lakebase のデータ にアクセスする方法
Python の豊富なモジュールエコシステムを活用することで、迅速に作業を開始し、システムを効果的に統合できます。CData Python Connector for Lakebase と SQLAlchemy ツールキットを使用して、Lakebase に接続された Python アプリケーションやスクリプトを構築できます。この記事では、SQLAlchemy を使用して Lakebase のデータ に接続し、クエリ、更新、削除、挿入を実行する方法を説明します。
CData Python Connector は最適化されたデータ処理機能を内蔵しており、Python からリアルタイムの Lakebase のデータ を操作する際に比類のないパフォーマンスを提供します。Lakebase に対して複雑な SQL クエリを発行すると、CData Connector はフィルタや集計などのサポートされている SQL 操作を直接 Lakebase にプッシュし、サポートされていない操作(多くの場合 SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。
Lakebase のデータ への接続
Lakebase のデータ への接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。
Databricks Lakebase に接続するには、以下のプロパティを設定します。
- DatabricksInstance: Databricks インスタンスまたはサーバーホスト名を指定します。形式は instance-abcdef12-3456-7890-abcd-abcdef123456.database.cloud.databricks.com です。
- Server: Lakebase データベースをホストするサーバーのホスト名または IP アドレスを指定します。
- Port(オプション): Lakebase データベースをホストするサーバーのポート番号を指定します。デフォルトは 5432 です。
- Database(オプション): Lakebase サーバーへの認証後に接続するデータベースを指定します。デフォルトでは認証ユーザーのデフォルトデータベースに接続します。
OAuth クライアント認証
OAuth クライアント資格情報を使用して認証するには、サービスプリンシパルで OAuth クライアントを構成します。手順の概要は以下のとおりです。
- 新しいサービスプリンシパルを作成・構成する
- サービスプリンシパルに権限を割り当てる
- サービスプリンシパル用の OAuth シークレットを作成する
詳細については、ヘルプドキュメントの「Setting Up OAuthClient Authentication」セクションをご参照ください。
OAuth PKCE 認証
PKCE(Proof Key for Code Exchange)を使用した OAuth code タイプで認証するには、以下のプロパティを設定します。
- AuthScheme: OAuthPKCE を指定します。
- User: 認証ユーザーのユーザー ID を指定します。
詳細については、ヘルプドキュメントをご参照ください。
以下の手順に従って SQLAlchemy をインストールし、Python オブジェクトを通じて Lakebase にアクセスしてみましょう。
必要なモジュールのインストール
pip ユーティリティを使用して、SQLAlchemy ツールキットと SQLAlchemy ORM パッケージをインストールします。
pip install sqlalchemy pip install sqlalchemy.orm
適切なモジュールをインポートします。
from sqlalchemy import create_engine, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker
Python での Lakebase のデータ のモデリング
これで接続文字列を使用して接続できます。create_engine 関数を使用して、Lakebase のデータ を操作するための Engine を作成します。
注意: 接続文字列のプロパティに特殊文字が含まれている場合は、URL エンコードする必要があります。詳細については、SQL Alchemy ドキュメントを参照してください。
engine = create_engine("lakebase:///?DatabricksInstance=lakebase&Server=127.0.0.1&Port=5432&Database=my_database")
Lakebase のデータ のマッピングクラスの宣言
接続を確立したら、ORM でモデル化するテーブルのマッピングクラスを宣言します(この記事では、Orders テーブルをモデル化します)。sqlalchemy.ext.declarative.declarative_base 関数を使用して、一部またはすべてのフィールド(カラム)を定義した新しいクラスを作成します。
base = declarative_base() class Orders(base): __tablename__ = "Orders" ShipName = Column(String,primary_key=True) ShipCity = Column(String) ...
Lakebase のデータ のクエリ
マッピングクラスを準備したら、セッションオブジェクトを使用してデータソースにクエリを実行できます。Engine をセッションにバインドした後、セッションの query メソッドにマッピングクラスを渡します。
query メソッドの使用
engine = create_engine("lakebase:///?DatabricksInstance=lakebase&Server=127.0.0.1&Port=5432&Database=my_database")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Orders).filter_by(ShipCountry="USA"):
print("ShipName: ", instance.ShipName)
print("ShipCity: ", instance.ShipCity)
print("---------")
別の方法として、適切なテーブルオブジェクトと execute メソッドを使用することもできます。以下のコードはアクティブな session で動作します。
execute メソッドの使用
Orders_table = Orders.metadata.tables["Orders"]
for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCountry == "USA")):
print("ShipName: ", instance.ShipName)
print("ShipCity: ", instance.ShipCity)
print("---------")
JOIN、集計、制限などのより複雑なクエリの例については、拡張機能のヘルプドキュメントを参照してください。
Lakebase のデータ の挿入
Lakebase のデータ を挿入するには、マッピングクラスのインスタンスを定義し、アクティブな session に追加します。セッションの commit 関数を呼び出して、追加されたすべてのインスタンスを Lakebase にプッシュします。
new_rec = Orders(ShipName="placeholder", ShipCountry="USA") session.add(new_rec) session.commit()
Lakebase のデータ の更新
Lakebase のデータ を更新するには、フィルタクエリで目的のレコードを取得します。次に、フィールドの値を変更し、セッションの commit 関数を呼び出して、変更されたレコードを Lakebase にプッシュします。
updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.ShipCountry = "USA" session.commit()
Lakebase のデータ の削除
Lakebase のデータ を削除するには、フィルタクエリで目的のレコードを取得します。次に、アクティブな session でレコードを削除し、セッションの commit 関数を呼び出して、指定されたレコード(行)に対して削除操作を実行します。
deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
無料トライアルと詳細情報
CData Python Connector for Lakebase の30日間の無料トライアルをダウンロードして、Lakebase のデータ に接続する Python アプリとスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお問い合わせください。