Google Cloud Data Fusion でLakebase のデータを扱う方法:CData JDBC Driver

宮本航太
宮本航太
プロダクトスペシャリスト
CData JDBC ドライバを使って、Google Cloud Data fusion で Lakebase のデータ をBigQuery にETL。



Google Cloud Data Fusion は、ノーコードでデータ連携の設定が可能な言わば GCP の ETL ツール(サービス)です。たくさんのコネクタや変換・分析機能がデフォルトで用意されているため、さまざまなデータソースを色々な組み合わせで扱うことが可能なようです。 また JDBC を扱うこともできるため、この記事では、CData JDBC Driver for Lakebase のデータ を使って、Lakebase のデータ データをCloud Data Fusion でGoogle BigQuery にノーコードでパイプラインします。

Cloud Data Fusion の準備

まずはCloud Data Fusion のインスタンスを作成します。

  1. Data Fusion のトップ画面にある「CREATE INSTANCE」からインスタンスを作成します。
  2. 作成されたインスタンス名を先ほどの画面でクリックすると以下の画面に遷移しますので、画面下部にある Service Account をコピーします。
  3. Cloud Data Fusion のインスタンス作成
  4. 画面上部にある追加からメンバーを追加します。メンバー名は先ほどコピーした「Service Account」に合わせてください。 役割は BiqQuery へもアクセスしますので、「BigQuery 管理者」、「Cloud Data Fusion 管理者」、「Cloud Data Fusion API サービス エージェント」を付与します。

CData JDBC Driver for Lakebase のアップロード

ここからは実際に、Data Fusion の設定をしていきます。 まずは JDBC Driver をアップロードを行います。

  1. 「View Instance」をクリックして、Data Fusion の Control Center を開きます。
  2. Cloud Data Fusion のControl Center を開く
  3. Control Center が表示されたら、「+」ボタンをクリックして JDBC Driver をアップロードしていきます。
    • Name:アップロードしたドライバーに設定する名前
    • Class name:cdata.jdbc.lakebase.LakebaseDriver
    JDBC Driver をCloud Data Fusion にアップロード
  4. アップロードする際の注意点として、Driver のファイル名を name-version の形式に変更してアップロードする必要があります。 なお、jarファイルをダブルクリックした際に表示されているバージョンをもとに「lakebase-connector-java-19.0.7115.0.jar」に変更しました。
  5. JDBC Driver をCloud Data Fusion にアップロード
  6. アップロードが成功するとこのような画面が表示されるので、「Create a Pipeline」をクリックします。
  7. JDBC Driver のアップロード終了

Lakebase からGoogle BigQuery へのパイプラインの作成

Data Fusion のパイプライン作成

インプット元はサイドメニューの「Source」から選択します。今回は先ほどアップロードした Lakebase のデータ の JDBC Driver を使用するため、「DataBase」を選択します。 アウトプット先は同じくサイドメニューより「Sink」→「BigQuery」を選択します。

Source およびSink 先の選択

「DataBase」の設定

「DataBase」のアイコンにカーソルを持ってくるとプロパティというボタンが表示されるのでクリックし、下記内容を設定します。

  • Label:Lakebase
  • Reference Name:Lakebase
  • Plugin Name:Lakebase Driver(Driver をアップロードした際の名前)
  • Plugin Type:jdbc
  • Connection String:Lakebase へ接続する際の JDBC URL
  • Import Query:インプットしたいデータを抽出するクエリ

Databricks Lakebase に接続するには、以下のプロパティを設定します。

  • DatabricksInstance: Databricks インスタンスまたはサーバーホスト名を指定します。形式は instance-abcdef12-3456-7890-abcd-abcdef123456.database.cloud.databricks.com です。
  • Server: Lakebase データベースをホストするサーバーのホスト名または IP アドレスを指定します。
  • Port(オプション): Lakebase データベースをホストするサーバーのポート番号を指定します。デフォルトは 5432 です。
  • Database(オプション): Lakebase サーバーへの認証後に接続するデータベースを指定します。デフォルトでは認証ユーザーのデフォルトデータベースに接続します。

OAuth クライアント認証

OAuth クライアント資格情報を使用して認証するには、サービスプリンシパルで OAuth クライアントを構成します。手順の概要は以下のとおりです。

  1. 新しいサービスプリンシパルを作成・構成する
  2. サービスプリンシパルに権限を割り当てる
  3. サービスプリンシパル用の OAuth シークレットを作成する

詳細については、ヘルプドキュメントの「Setting Up OAuthClient Authentication」セクションをご参照ください。

OAuth PKCE 認証

PKCE(Proof Key for Code Exchange)を使用した OAuth code タイプで認証するには、以下のプロパティを設定します。

  • AuthScheme: OAuthPKCE を指定します。
  • User: 認証ユーザーのユーザー ID を指定します。

詳細については、ヘルプドキュメントをご参照ください。

Connection String は以下の形式です。

jdbc:lakebase:DatabricksInstance=lakebase;Server=127.0.0.1;Port=5432;Database=my_database;InitiateOAuth=GETANDREFRESH

Database プロパティ設定

上のキャプチャの赤枠は、Salesforce から BigQuery へアウトプットするデータの定義となります。 こちらは「Import Query」のすぐ右上にある「Get Schema」をクリックすると下の画面が表示されますので、「Import Query」で入力したクエリを実行し、カラムを定義します。

Output schema 設定

「BigQuery」の設定

こちらも同様に BigQuery のプロパティから下記内容を設定します。

  • Label:BigQuery
  • Reference Name:BigQuery
  • Project ID:使用するProject ID
  • DataSet:使用するDataSet
  • Table:使用するテーブル名、例:Account_DataFusion
BigQuery のプロパティ設定

作成したLakebase のデータ からBigQuery のパイプラインの実行

まずは作成したパイプラインをデプロイします。赤枠の「Deploy」ボタンをクリックしてデプロイを行います。

Deploy Cloud Data Fusion Pipeline

デプロイ完了後、Runボタンが表示されますので、クリックします。

デプロイしたパイプラインを実行

このようにCData JDBC ドライバをアップロードすることで、簡単にGoogle Cloud Data Fusion でLakebase のデータ データをノーコードで連携し、BigQuery などへのパイプラインを作成することができます。

是非、CData JDBC Driver for Lakebase 30日の無償評価版 をダウンロードして、お試しください。

はじめる準備はできましたか?

Lakebase Driver の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

Lakebase Icon Lakebase JDBC Driver お問い合わせ

Lakebaseと連携する強力なJavaアプリケーションを迅速に作成・デプロイできます。