SQLAlchemy ORM を使用して Python で Jira Service Management のデータ にアクセスする方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
SQLAlchemy オブジェクトリレーショナルマッピングを使用して、Jira Service Management のデータ を操作する Python アプリケーションとスクリプトを作成します。

Python の豊富なモジュールエコシステムを活用することで、迅速に作業を開始し、システムを効果的に統合できます。CData Python Connector for Jira Service Management と SQLAlchemy ツールキットを使用して、Jira Service Management に接続された Python アプリケーションやスクリプトを構築できます。この記事では、SQLAlchemy を使用して Jira Service Management のデータ に接続し、クエリ、更新、削除、挿入を実行する方法を説明します。

CData Python Connector は最適化されたデータ処理機能を内蔵しており、Python からリアルタイムの Jira Service Management のデータ を操作する際に比類のないパフォーマンスを提供します。Jira Service Management に対して複雑な SQL クエリを発行すると、CData Connector はフィルタや集計などのサポートされている SQL 操作を直接 Jira Service Management にプッシュし、サポートされていない操作(多くの場合 SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。

Jira Service Management のデータ への接続

Jira Service Management のデータ への接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。

Jira Service Management 接続プロパティの取得・設定方法

任意のJira Service Management Cloud またはJira Service Management Server インスタンスへの接続を確立できます。接続するにはURL プロパティを設定します。

  • URL(例:https://yoursitename.atlassian.net)

カスタムフィールドへのアクセス

デフォルトでは、CData 製品はシステムフィールドのみを表示します。Issues のカスタムフィールドにアクセスするには、IncludeCustomFields を設定します。

Jira Service Management への認証

ベーシック認証

ローカルサーバーアカウントで認証するためには、次の接続プロパティを指定します。

  • AuthSchemeBasic に設定。
  • User:認証ユーザーのユーザー名に設定。
  • Password:認証ユーザーのパスワードに設定。

API トークン

Cloud アカウントに接続するには、APIToken を取得する必要があります。API トークンを生成するには、Atlassian アカウントにログインして「API トークン」 -> 「API トークンの作成」をクリックします。生成されたトークンが表示されます。

データに接続するには以下を設定します。

  • AuthSchemeAPIToken に設定。
  • User:認証ユーザーのユーザー名に設定。
  • APIToken:作成したAPI トークンに設定。

ちなみに、Cloud アカウントへの接続でパスワード認証を使うことも可能ですが、非推奨となっています。

OAuth 2.0

Jira Service Management のOAuth 2.0 サポート(3LO)を活用して、ログインクレデンシャルなしでデータに接続することもできます。

この場合、AuthSchemeをすべてのOAuth フローでOAuth に設定する必要があります。また、すべてのシナリオでカスタムOAuth アプリケーションを作成して構成する必要があります。詳しくは、ヘルプドキュメントの「OAuth」セクションを参照してください。

以下の手順に従って SQLAlchemy をインストールし、Python オブジェクトを通じて Jira Service Management にアクセスしてみましょう。

必要なモジュールのインストール

pip ユーティリティを使用して、SQLAlchemy ツールキットと SQLAlchemy ORM パッケージをインストールします。

pip install sqlalchemy
pip install sqlalchemy.orm

適切なモジュールをインポートします。

from sqlalchemy import create_engine, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

Python での Jira Service Management のデータ のモデリング

これで接続文字列を使用して接続できます。create_engine 関数を使用して、Jira Service Management のデータ を操作するための Engine を作成します。

注意: 接続文字列のプロパティに特殊文字が含まれている場合は、URL エンコードする必要があります。詳細については、SQL Alchemy ドキュメントを参照してください。

engine = create_engine("jiraservicedesk:///?ApiKey=myApiKey&User=MyUser")

Jira Service Management のデータ のマッピングクラスの宣言

接続を確立したら、ORM でモデル化するテーブルのマッピングクラスを宣言します(この記事では、Requests テーブルをモデル化します)。sqlalchemy.ext.declarative.declarative_base 関数を使用して、一部またはすべてのフィールド(カラム)を定義した新しいクラスを作成します。

base = declarative_base()
class Requests(base):
	__tablename__ = "Requests"
	RequestId = Column(String,primary_key=True)
	ReporterName = Column(String)
	...

Jira Service Management のデータ のクエリ

マッピングクラスを準備したら、セッションオブジェクトを使用してデータソースにクエリを実行できます。Engine をセッションにバインドした後、セッションの query メソッドにマッピングクラスを渡します。

query メソッドの使用

engine = create_engine("jiraservicedesk:///?ApiKey=myApiKey&User=MyUser")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Requests).filter_by(CurrentStatus="Open"):
	print("RequestId: ", instance.RequestId)
	print("ReporterName: ", instance.ReporterName)
	print("---------")

別の方法として、適切なテーブルオブジェクトと execute メソッドを使用することもできます。以下のコードはアクティブな session で動作します。

execute メソッドの使用

Requests_table = Requests.metadata.tables["Requests"]
for instance in session.execute(Requests_table.select().where(Requests_table.c.CurrentStatus == "Open")):
	print("RequestId: ", instance.RequestId)
	print("ReporterName: ", instance.ReporterName)
	print("---------")

JOIN、集計、制限などのより複雑なクエリの例については、拡張機能のヘルプドキュメントを参照してください。

Jira Service Management のデータ の挿入

Jira Service Management のデータ を挿入するには、マッピングクラスのインスタンスを定義し、アクティブな session に追加します。セッションの commit 関数を呼び出して、追加されたすべてのインスタンスを Jira Service Management にプッシュします。

new_rec = Requests(RequestId="placeholder", CurrentStatus="Open")
session.add(new_rec)
session.commit()

Jira Service Management のデータ の更新

Jira Service Management のデータ を更新するには、フィルタクエリで目的のレコードを取得します。次に、フィールドの値を変更し、セッションの commit 関数を呼び出して、変更されたレコードを Jira Service Management にプッシュします。

updated_rec = session.query(Requests).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.CurrentStatus = "Open"
session.commit()

Jira Service Management のデータ の削除

Jira Service Management のデータ を削除するには、フィルタクエリで目的のレコードを取得します。次に、アクティブな session でレコードを削除し、セッションの commit 関数を呼び出して、指定されたレコード(行)に対して削除操作を実行します。

deleted_rec = session.query(Requests).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

無料トライアルと詳細情報

CData Python Connector for Jira Service Management の30日間の無料トライアルをダウンロードして、Jira Service Management のデータ に接続する Python アプリとスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお問い合わせください。

はじめる準備はできましたか?

Jira Service Management Connector のコミュニティライセンスをダウンロード:

 ダウンロード

詳細:

Jira Service Management Icon Jira Service Management Python Connector お問い合わせ

Jira Service Desk データ連携用Python コネクタライブラリ。Jira Service Desk データをpandas、SQLAlchemy、Dash、petl などの人気のPython ツールにシームレスに統合。