CData SSIS Components を使用して IBM Cloud Object Storage のデータを Google BigQuery にマイグレーション
Google BigQuery は、サーバーレスで高いスケーラビリティとコスト効率を備えたデータウェアハウスであり、組織がビッグデータを実用的なインサイトに変換できるよう設計されています。
CData SSIS Components は、SQL Server Integration Services を拡張し、さまざまなソースやデスティネーションからデータを簡単にインポート・エクスポートできるようにします。
この記事では、BigQuery へのエクスポート時のデータ型マッピングの考慮事項を確認し、CData SSIS Components for IBM Cloud Object Storage と BigQuery を使用してIBM Cloud Object Storage のデータを Google BigQuery にマイグレーションする方法を説明します。
データ型マッピング
| Google BigQuery スキーマ | CData スキーマ |
|---|---|
|
STRING, GEOGRAPHY, JSON, INTERVAL |
string |
|
BYTES |
binary |
|
INTEGER |
long |
|
FLOAT |
double |
|
NUMERIC, BIGNUMERIC |
decimal |
|
BOOLEAN |
bool |
|
DATE |
date |
|
TIME |
time |
|
DATETIME, TIMESTAMP |
datetime |
|
STRUCT |
下記参照 |
|
ARRAY |
下記参照 |
STRUCT 型と ARRAY 型
Google BigQuery は、1 つの行に複合値を格納するための STRUCT と ARRAY という 2 種類の型をサポートしています。Google BigQuery の一部では、これらは RECORD 型および REPEATED 型としても知られています。
STRUCT は、名前でアクセスでき、異なる型を持つことができる固定サイズの値のグループです。コンポーネントは struct をフラット化し、ドット表記の名前でフィールドにアクセスできるようにします。これらのドット表記の名前は引用符で囲む必要があることに注意してください。
ARRAY は、同じ型の値で任意のサイズを持つことができるグループです。コンポーネントは配列を単一の複合値として扱い、JSON 集約として報告します。これらの型は組み合わせることができ、STRUCT 型が ARRAY フィールドを含んだり、ARRAY フィールドが STRUCT 値のリストになったりする場合があります。
特別な考慮事項
- Google BigQuery には、DATETIME(タイムゾーンなし)と TIMESTAMP(タイムゾーンあり)の両方のデータ型があり、CData SSIS Components はローカルマシンのタイムゾーンに基づいて datetime にマッピングします。
- Google BigQuery では、NUMERIC 型は 38 桁の精度と小数点以下最大 9 桁をサポートし、BIGNUMERIC 型は 76 桁の精度と小数点以下最大 38 桁をサポートします。CData SSIS Components for Google BigQuery は精度/スケールを自動検出しますが、Destination コンポーネントでは高精度カラムを手動でマッピングできます。
-
INTERVAL データ型:
-
コンポーネントは INTERVAL 型を文字列として表現します。クエリで INTERVAL 型が必要な場合は、BigQuery SQL の INTERVAL フォーマットを使用して INTERVAL を指定する必要があります:
YEAR-MONTH DAY HOUR:MINUTE:SECOND.FRACTION
-
例えば、「5 年と 11 ヶ月、マイナス 10 日と 3 時間と 2.5 秒」という値は正しいフォーマットでは以下のようになります:
5-11 -10 -3:0:0.2.5
-
コンポーネントは INTERVAL 型を文字列として表現します。クエリで INTERVAL 型が必要な場合は、BigQuery SQL の INTERVAL フォーマットを使用して INTERVAL を指定する必要があります:
前提条件
- Visual Studio 2022
- Visual Studio 2022 用 SQL Server Integration Services Projects 拡張機能
- CData SSIS Components for Google BigQuery
- CData SSIS Components for IBM Cloud Object Storage
プロジェクトの作成とコンポーネントの追加
-
Visual Studio を開き、新しい Integration Services プロジェクトを作成します。
- Control Flow 画面に新しい Data Flow Task を追加し、Data Flow Task を開きます。
-
Data Flow Task に CData IBM Cloud Object Storage Source コントロールと CData GoogleBigQuery Destination コントロールを追加します。
IBM Cloud Object Storage ソースの設定
以下の手順に従って、IBM Cloud Object Storage への接続に必要なプロパティを指定します。
-
CData IBM Cloud Object Storage Source をダブルクリックしてソースコンポーネントエディタを開き、新しい接続を追加します。
-
CData IBM Cloud Object Storage Connection Manager で接続プロパティを設定し、接続をテストして保存します。
Cloud Object Storage 接続プロパティの取得・設定方法
Cloud Object Storage に接続する前に、Cloud Object Storage インスタンスを登録してCloud Object Storage API キーとCRN を取得していきます。
Cloud Object Storage の新規インスタンスの登録
IBM Cloud アカウントにCloud Object Storage がまだない場合は、以下の手順に従ってアカウントにSQL Query のインスタンスをインストールできます。
- IBM Cloud アカウントにログインします。
- Cloud Object Storage ページに移動して、インスタンス名を指定して「作成」をクリックします。Cloud Object Storage の新規インスタンスにリダイレクトされます。
API キー
API キーは以下の手順で取得できます。
- まずは、IBM Cloud アカウントにログインします。
- API キーページに移動します。
- 中央右隅のIBM Cloud APIキーの作成 をクリックして、新しいAPI キーを作成します。
- ポップアップウィンドウが表示されたら、API キーの名前を指定して作成をクリックします。ダッシュボードからはアクセスできなくなるため、API Key を控えておきましょう。
Cloud Object Storage CRN
デフォルトでは、CData 製品はCloud Object Storage CRN を自動で取得します。ただし、複数のアカウントがある場合は、CloudObjectStorageCRN を明示的に指定する必要があります。この値は、次の2つの方法で取得できます。
- Services ビューをクエリする。これにより、IBM Cloud Object Storage インスタンスとそれぞれのCRN がリストされます。
- IBM Cloud で直接CRN を見つける。これを行うには、IBM Cloud のダッシュボードに移動します。リソースリストで、ストレージからCloud Object Storage リソースを選択してCRN を取得します。
IBM Cloud Object Storage への接続
これで準備は完了です。以下の接続プロパティを設定してください。
- InitiateOAuth:GETANDREFRESH に設定。InitiateOAuth を使うと、OAuth 認証を繰り返す必要がなく、さらに自動でアクセストークンを設定できます。
- ApiKey:セットアップ中に控えたAPI キーを指定。
- CloudObjectStorageCRN(オプション):控えておいたCloud Object Storage のCRN に設定。Cloud Object Storage アカウントが複数ある場合のみ設定する必要があります。
プロパティを設定したら、これで接続設定は完了です。
-
接続を保存後、「Table or view」を選択し、Google BigQuery にエクスポートするテーブルまたはビューを選択して、CData IBM Cloud Object Storage Source Editor を閉じます。
Google BigQuery デスティネーションの設定
IBM Cloud Object Storage Source を設定したら、Google BigQuery 接続を設定してカラムをマッピングします。
-
CData Google BigQuery Destination をダブルクリックしてデスティネーションコンポーネントエディタを開き、新しい接続を追加します。
-
CData GoogleBigQuery Connection Manager で接続プロパティを設定し、接続をテストして保存します。
- Google は OAuth 認証標準を使用しています。個々のユーザーに代わって Google API にアクセスするには、埋め込み資格情報を使用するか、独自の OAuth アプリを登録できます。 OAuth を使用すると、サービスアカウントを使用して Google Apps ドメイン内のユーザーに代わって接続することもできます。サービスアカウントで認証するには、アプリケーションを登録して OAuth JWT 値を取得します。 OAuth 値に加えて、DatasetId と ProjectId を指定します。OAuth の使用ガイドについては、ヘルプドキュメントの「Getting Started」章を参照してください。
便利な接続プロパティ
- QueryPassthrough: True に設定すると、クエリは Google BigQuery に直接渡されます。
- ConvertDateTimetoGMT: True に設定すると、コンポーネントはローカルマシンの時刻ではなく、日時値を GMT に変換します。
- FlattenObjects: デフォルトでは、コンポーネントは STRUCT カラムの各フィールドを独自のカラムとして報告し、STRUCT カラム自体は非表示にします。False に設定すると、トップレベルの STRUCT は展開されず、独自のカラムとして残ります。このカラムの値は JSON 集約として報告されます。
- SupportCaseSensitiveTables: このプロパティを true に設定すると、同じ名前で大文字小文字が異なるテーブルは、すべてメタデータで報告されるように名前が変更されます。デフォルトでは、プロバイダーはテーブル名を大文字小文字を区別しないものとして扱うため、複数のテーブルが同じ名前で大文字小文字が異なる場合、メタデータでは 1 つだけが報告されます。
-
接続を保存後、Use a Table メニューでテーブルを選択し、Action メニューで Insert を選択します。
-
Column Mappings タブで、入力カラムからデスティネーションカラムへのマッピングを設定します。
プロジェクトの実行
これでプロジェクトを実行できます。SSIS Task の実行が完了すると、SQL テーブルのデータが選択したテーブルにエクスポートされます。