SQLAlchemy ORM を使用して Python で Google Cloud Storage のデータ にアクセスする方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
SQLAlchemy オブジェクトリレーショナルマッピングを使用して、Google Cloud Storage のデータ を操作する Python アプリケーションとスクリプトを作成します。

Python の豊富なモジュールエコシステムを活用することで、迅速に作業を開始し、システムを効果的に統合できます。CData Python Connector for Google Cloud Storage と SQLAlchemy ツールキットを使用して、Google Cloud Storage に接続された Python アプリケーションやスクリプトを構築できます。この記事では、SQLAlchemy を使用して Google Cloud Storage のデータ に接続し、クエリを実行する方法を説明します。

CData Python Connector は最適化されたデータ処理機能を内蔵しており、Python からリアルタイムの Google Cloud Storage のデータ を操作する際に比類のないパフォーマンスを提供します。Google Cloud Storage に対して複雑な SQL クエリを発行すると、CData Connector はフィルタや集計などのサポートされている SQL 操作を直接 Google Cloud Storage にプッシュし、サポートされていない操作(多くの場合 SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。

Google Cloud Storage のデータ への接続

Google Cloud Storage のデータ への接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。

ユーザーアカウントでの認証

ユーザー資格情報の接続プロパティを設定することなく接続できます。InitiateOAuth をGETANDREFRESH に設定したら、接続の準備が完了です。

接続すると、Google Cloud Storage OAuth エンドポイントがデフォルトブラウザで開きます。ログインして権限を付与すると、OAuth プロセスが完了します。

サービスアカウントでの認証

サービスアカウントには、ブラウザでユーザー認証を行わないサイレント認証があります。サービスアカウントを使用して、企業全体のアクセススコープを委任することもできます。

このフローでは、OAuth アプリケーションを作成する必要があります。詳しくは、ヘルプドキュメントを参照してください。以下の接続プロパティを設定したら、接続の準備が完了です:

  • InitiateOAuth: GETANDREFRESH に設定。
  • OAuthJWTCertType: PFXFILE に設定。
  • OAuthJWTCert: 生成した.p12 ファイルへのパスに設定。
  • OAuthJWTCertPassword: .p12 ファイルのパスワードに設定。
  • OAuthJWTCertSubject: 証明書ストアの最初の証明書が選ばれるように"*" に設定。
  • OAuthJWTIssuer: 「サービスアカウント」セクションで「サービスアカウントの管理」をクリックし、このフィールドをサービスアカウントID フィールドに表示されているE メールアドレスに設定。
  • OAuthJWTSubject: サブジェクトタイプが"enterprise" に設定されている場合はエンタープライズID に設定し、"user" に設定されている場合はアプリユーザーID に設定。
  • ProjectId: 接続するプロジェクトのID に設定。

これで、サービスアカウントのOAuth フローが完了します。

以下の手順に従って SQLAlchemy をインストールし、Python オブジェクトを通じて Google Cloud Storage にアクセスしてみましょう。

必要なモジュールのインストール

pip ユーティリティを使用して、SQLAlchemy ツールキットと SQLAlchemy ORM パッケージをインストールします。

pip install sqlalchemy
pip install sqlalchemy.orm

適切なモジュールをインポートします。

from sqlalchemy import create_engine, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

Python での Google Cloud Storage のデータ のモデリング

これで接続文字列を使用して接続できます。create_engine 関数を使用して、Google Cloud Storage のデータ を操作するための Engine を作成します。

注意: 接続文字列のプロパティに特殊文字が含まれている場合は、URL エンコードする必要があります。詳細については、SQL Alchemy ドキュメントを参照してください。

engine = create_engine("googlecloudstorage:///?ProjectId='project1'")

Google Cloud Storage のデータ のマッピングクラスの宣言

接続を確立したら、ORM でモデル化するテーブルのマッピングクラスを宣言します(この記事では、Buckets テーブルをモデル化します)。sqlalchemy.ext.declarative.declarative_base 関数を使用して、一部またはすべてのフィールド(カラム)を定義した新しいクラスを作成します。

base = declarative_base()
class Buckets(base):
	__tablename__ = "Buckets"
	Name = Column(String,primary_key=True)
	OwnerId = Column(String)
	...

Google Cloud Storage のデータ のクエリ

マッピングクラスを準備したら、セッションオブジェクトを使用してデータソースにクエリを実行できます。Engine をセッションにバインドした後、セッションの query メソッドにマッピングクラスを渡します。

query メソッドの使用

engine = create_engine("googlecloudstorage:///?ProjectId='project1'")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Buckets).filter_by(Name="TestBucket"):
	print("Name: ", instance.Name)
	print("OwnerId: ", instance.OwnerId)
	print("---------")

別の方法として、適切なテーブルオブジェクトと execute メソッドを使用することもできます。以下のコードはアクティブな session で動作します。

execute メソッドの使用

Buckets_table = Buckets.metadata.tables["Buckets"]
for instance in session.execute(Buckets_table.select().where(Buckets_table.c.Name == "TestBucket")):
	print("Name: ", instance.Name)
	print("OwnerId: ", instance.OwnerId)
	print("---------")

JOIN、集計、制限などのより複雑なクエリの例については、拡張機能のヘルプドキュメントを参照してください。

無料トライアルと詳細情報

CData Python Connector for Google Cloud Storage の30日間の無料トライアルをダウンロードして、Google Cloud Storage のデータ に接続する Python アプリとスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお問い合わせください。

はじめる準備はできましたか?

Google Cloud Storage Connector のコミュニティライセンスをダウンロード:

 ダウンロード

詳細:

Google Cloud Storage Icon Google Cloud Storage Python Connector お問い合わせ

Google Cloud Storage データ連携用Python コネクタライブラリ。Google Cloud Storage データをPandas、SQLAlchemy、Dash、petl などの人気のPython ツールにシームレスに統合。