CData SSIS Components を使用して Facebook Ads のデータを Databricks にマイグレーション

Cameron Leblanc
Cameron Leblanc
Technology Evangelist
CData SSIS Tasks for Facebook Ads と Databricks を使用して、Facebook Ads のデータを Databricks に簡単にプッシュできます。

Databricks は、大量のデータを簡単に処理、分析、可視化できる統合データ分析プラットフォームです。データエンジニアリング、データサイエンス、機械学習の機能を単一のプラットフォームに統合し、チームがコラボレーションしてデータからインサイトを得ることを容易にします。

CData SSIS Components は、SQL Server Integration Services を拡張し、さまざまなソースやデスティネーションからデータを簡単にインポート・エクスポートできるようにします。

この記事では、Databricks へのエクスポート時のデータ型マッピングの考慮事項を確認し、CData SSIS Components for Facebook Ads と Databricks を使用してFacebook Ads のデータを Databricks にマイグレーションする方法を説明します。

データ型マッピング

Databricks スキーマ CData スキーマ

int, integer, int32

int

smallint, short, int16

smallint

double, float, real

float

date

date

datetime, timestamp

datetime

time, timespan

time

string, varchar

長さ > 4000 の場合:nvarchar(max)、それ以外:nvarchar(length)

long, int64, bigint

bigint

boolean, bool

tinyint

decimal, numeric

decimal

uuid

nvarchar(length)

binary, varbinary, longvarbinary

binary(1000) または SQL Server 2000 以降は varbinary(max)


特別な考慮事項

  • String/VARCHAR: Databricks の String カラムは、カラムの長さによって異なるデータ型にマッピングされます。カラムの長さが 4000 を超える場合、カラムは nvarchar(max) にマッピングされます。それ以外の場合は、nvarchar(length) にマッピングされます。
  • DECIMAL: Databricks は最大 38 桁の精度の DECIMAL 型をサポートしていますが、それを超えるソースカラムはロードエラーを引き起こす可能性があります。

前提条件

プロジェクトの作成とコンポーネントの追加

  1. Visual Studio を開き、新しい Integration Services プロジェクトを作成します。
  2. Control Flow 画面に新しい Data Flow Task を追加し、Data Flow Task を開きます。
  3. Data Flow Task に CData Facebook Ads Source コントロールと CData Databricks Destination コントロールを追加します。

Facebook Ads ソースの設定

以下の手順に従って、Facebook Ads への接続に必要なプロパティを指定します。

  1. CData Facebook Ads Source をダブルクリックしてソースコンポーネントエディタを開き、新しい接続を追加します。
  2. CData Facebook Ads Connection Manager で接続プロパティを設定し、接続をテストして保存します。

    Facebook Ads 接続プロパティの取得・設定方法

    ほとんどのテーブルで、アプリケーション認証と同様にユーザー認証を必要とします。Facebook Ads はユーザー認証にOAuth 標準を使用しています。Facebook への認証には、組み込み認証を使用してブラウザ経由で完結することもできますし、Facebook にアプリを登録することで独自のOAuthClientId、OAuthClientSecret、CallbackURL を取得することもできます。

    の設定方法については、ヘルプドキュメントの「OAuth」セクションを参照してください。

    任意で以下の項目を設定して、フィルタリングや集計を行うもできます。必要に応じてご利用ください。

    • Target:Facebook データのテーブルのいくつかはターゲットでフィルタリングできます。例えば、動画のコメントを取得するにはターゲットに動画のID を指定します。このプロパティは、クエリ結果を指定されたターゲットに合致するレコードにフィルタリングします。Target カラムを使ってクエリ毎にこの制限をかけることができます。
    • AggregateFormat:CData 製品は、いくつかのカラムを文字列集合として返します。例えば、エンティティのいいねデータは集計されて返されます。デフォルトでは、CData 製品はJSON で集計カラムを返します。集計をXML で返すことも可能です。
    • RetryLevel:このプロパティを使用して、特定の広告インサイトのクエリとエラーに対するクエリの自動再試行を制御します。
  3. 接続を保存後、「Table or view」を選択し、Databricks にエクスポートするテーブルまたはビューを選択して、CData Facebook Ads Source Editor を閉じます。

Databricks デスティネーションの設定

Facebook Ads Source を設定したら、Databricks 接続を設定してカラムをマッピングします。

  1. CData Databricks Destination をダブルクリックしてデスティネーションコンポーネントエディタを開き、新しい接続を追加します。
  2. CData Databricks Connection Manager で接続プロパティを設定し、接続をテストして保存します。Databricks クラスターに接続するには、以下のようにプロパティを設定します。

    注意:必要な値は、Databricks インスタンスで Clusters に移動し、目的のクラスターを選択して、Advanced Options の下にある JDBC/ODBC タブを選択することで確認できます。

    • Server:Databricks クラスターの Server Hostname を設定します。
    • HTTPPath:Databricks クラスターの HTTP Path を設定します。
    • Token:個人用アクセストークンを設定します(この値は、Databricks インスタンスの User Settings ページに移動し、Access Tokens タブを選択することで取得できます)。

    その他の便利な接続プロパティ

    • QueryPassthrough: True に設定すると、クエリは Databricks に直接渡されます。
    • ConvertDateTimetoGMT: True に設定すると、コンポーネントはローカルマシンの時刻ではなく、日時値を GMT に変換します。
    • UseUploadApi: このプロパティを true に設定すると、Bulk INSERT 操作で大量のデータがある場合にパフォーマンスが向上します。
    • UseCloudFetch: このオプションは、テーブルに 100 万件を超えるエントリがある場合にクエリ効率を向上させるために CloudFetch を使用するかどうかを指定します。
  3. 接続を保存後、Use a Table メニューでテーブルを選択し、Action メニューで Insert を選択します。
  4. Column Mappings タブで、入力カラムからデスティネーションカラムへのマッピングを設定します。

プロジェクトの実行

これでプロジェクトを実行できます。SSIS Task の実行が完了すると、SQL テーブルのデータが選択したテーブルにエクスポートされます。

はじめる準備はできましたか?

Facebook Ads SSIS Component の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

Facebook Ads Icon Facebook Ads SSIS Components お問い合わせ

パワフルなSSIS Source & Destination Components で、SQL Server とFacebook Ads をSSIS ワークフローで連携。

Data Flow Components を使って、Facebook Ads データを簡単に同期。データ同期、ローカルバックアップ、ワークフロー自動化に最適!