Python で pandas を使って Elasticsearch データを可視化する方法
Python の豊富なエコシステムを活用することで、作業を迅速に開始し、システム間の連携をより効果的に行うことができます。CData Python Connector for Elasticsearch、pandas および Matplotlib モジュール、SQLAlchemy ツールキットを組み合わせることで、Elasticsearch に接続した Python アプリケーションやスクリプトを構築し、Elasticsearch のデータを可視化できます。この記事では、pandas、SQLAlchemy、Matplotlib の組み込み関数を使用して Elasticsearch のデータに接続し、クエリを実行して結果を可視化する方法を説明します。
CData Python Connector は、組み込みの最適化されたデータ処理機能により、Python での Elasticsearch のデータへのリアルタイムアクセスにおいて比類のないパフォーマンスを提供します。Elasticsearch に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を Elasticsearch に直接プッシュし、サポートされていない操作(多くの場合、SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。
Elasticsearch データ連携について
CData を使用すれば、Elasticsearch のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:
- SQL エンドポイントと REST エンドポイントの両方にアクセスでき、接続を最適化し、Elasticsearch データの読み書きに関してより多くのオプションを提供します。
- v2.2 以降およびオープンソース Elasticsearch サブスクリプションを含む、ほぼすべての Elasticsearch インスタンスに接続できます。
- SCORE() 関数を明示的に要求することなく、常にクエリ結果の関連性スコアを受け取ることができます。これにより、サードパーティツールからのアクセスが簡素化され、クエリ結果のテキスト関連性のランキングを簡単に確認できます。
- 複数のインデックスを検索でき、クライアントマシンではなく Elasticsearch がクエリと結果の管理・処理を担当します。
ユーザーは、Crystal Reports、Power BI、Excel などの分析ツールと Elasticsearch データを統合し、当社のツールを活用して、Elasticsearch を含むすべてのデータソースへの単一のフェデレートアクセスレイヤーを実現しています。
CData の Elasticsearch ソリューションの詳細については、ナレッジベース記事をご覧ください:CData Elasticsearch Driver Features & Differentiators
はじめに
Elasticsearch のデータへの接続
Elasticsearch のデータへの接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。
Elasticsearch 接続プロパティの取得・設定方法
接続するには、Server およびPort 接続プロパティを設定します。 認証には、User とPassword プロパティ、PKI (public key infrastructure)、またはその両方を設定します。 PKI を使用するには、SSLClientCert、SSLClientCertType、SSLClientCertSubject、およびSSLClientCertPassword プロパティを設定します。
CData 製品は、認証とTLS/SSL 暗号化にX-Pack Security を使用しています。TLS/SSL で接続するには、Server 値に'https://' を接頭します。Note: PKI を 使用するためには、TLS/SSL およびクライアント認証はX-Pack 上で有効化されていなければなりません。
接続されると、X-Pack では、設定したリルムをベースにユーザー認証およびロールの許可が実施されます。
以下の手順に従って、必要なモジュールをインストールし、Python オブジェクトを介して Elasticsearch にアクセスしてみましょう。
必要なモジュールのインストール
pip ユーティリティを使用して、pandas、Matplotlib モジュール、および SQLAlchemy ツールキットをインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
以下のようにモジュールをインポートしてください。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Python で Elasticsearch のデータを可視化する
接続文字列を使用して接続できます。create_engine 関数を使用して、Elasticsearch のデータを操作するための Engine を作成します。
engine = create_engine("elasticsearch:///?Server=127.0.0.1&Port=9200&User=admin&Password=123456")
Elasticsearch への SQL の実行
pandas の read_sql 関数を使用して、SQL ステートメントを実行し、結果セットを DataFrame に格納します。
df = pandas.read_sql("SELECT OrderName, Freight FROM Orders WHERE ShipCity = 'New York'", engine)
Elasticsearch のデータの可視化
クエリ結果が DataFrame に格納されたら、plot 関数を使用して Elasticsearch のデータを表示するグラフを作成します。show メソッドで、グラフを新しいウィンドウに表示します。
df.plot(kind="bar", x="OrderName", y="Freight") plt.show()
無料トライアル & 詳細情報
CData Python Connector for Elasticsearch の 30日間無料トライアルをダウンロードして、Elasticsearch のデータに接続する Python アプリケーションやスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお気軽にお問い合わせください。
完全なソースコード
import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin
engine = create_engine("elasticsearch:///?Server=127.0.0.1&Port=9200&User=admin&Password=123456")
df = pandas.read_sql("SELECT OrderName, Freight FROM Orders WHERE ShipCity = 'New York'", engine)
df.plot(kind="bar", x="OrderName", y="Freight")
plt.show()