Python で pandas を使って Databricks データを可視化する方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
pandas などのモジュールを使って Python で Databricks のデータをリアルタイムに分析・可視化する方法を紹介します。

Python の豊富なエコシステムを活用することで、作業を迅速に開始し、システム間の連携をより効果的に行うことができます。CData Python Connector for Databricks、pandas および Matplotlib モジュール、SQLAlchemy ツールキットを組み合わせることで、Databricks に接続した Python アプリケーションやスクリプトを構築し、Databricks のデータを可視化できます。この記事では、pandas、SQLAlchemy、Matplotlib の組み込み関数を使用して Databricks のデータに接続し、クエリを実行して結果を可視化する方法を説明します。

CData Python Connector は、組み込みの最適化されたデータ処理機能により、Python での Databricks のデータへのリアルタイムアクセスにおいて比類のないパフォーマンスを提供します。Databricks に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を Databricks に直接プッシュし、サポートされていない操作(多くの場合、SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。

Databricks データ連携について

CData を使用すれば、Databricks のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:

  • Runtime バージョン 9.1 - 13.X から Pro および Classic Databricks SQL バージョンまで、すべてのバージョンの Databricks にアクセスできます。
  • あらゆるホスティングソリューションとの互換性により、お好みの環境で Databricks を使用し続けることができます。
  • パーソナルアクセストークン、Azure サービスプリンシパル、Azure AD など、さまざまな方法で安全に認証できます。
  • Databricks ファイルシステム、Azure Blob ストレージ、AWS S3 ストレージを使用して Databricks にデータをアップロードできます。

多くのお客様が、さまざまなシステムから Databricks データレイクハウスにデータを移行するために CData のソリューションを使用していますが、ライブ接続ソリューションを使用して、データベースと Databricks 間の接続をフェデレートしているお客様も多数います。これらのお客様は、SQL Server リンクサーバーまたは Polybase を使用して、既存の RDBMS 内から Databricks へのライブアクセスを実現しています。

一般的な Databricks のユースケースと CData のソリューションがデータの問題解決にどのように役立つかについては、ブログをご覧ください:What is Databricks Used For? 6 Use Cases


はじめに


Databricks のデータへの接続

Databricks のデータへの接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。

Databricks 接続プロパティの取得・設定方法

Databricks クラスターに接続するには、以下のプロパティを設定します。

  • Database:Databricks データベース名。
  • Server:Databricks クラスターのサーバーのホスト名
  • HTTPPath:Databricks クラスターのHTTP パス。
  • Token:個人用アクセストークン。この値は、Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
Databricks インスタンスで必要な値は、クラスターに移動して目的のクラスターを選択し、Advanced Options の下にあるJDBC/ODBC タブを選択することで見つけることができます。

Databricks への認証

CData は、次の認証スキームをサポートしています。

  • 個人用アクセストークン
  • Microsoft Entra ID(Azure AD)
  • Azure サービスプリンシパル
  • OAuthU2M
  • OAuthM2M

個人用アクセストークン

認証するには、次を設定します。

  • AuthSchemePersonalAccessToken
  • Token:Databricks サーバーへの接続に使用するトークン。Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。

その他の認証方法については、ヘルプドキュメント の「はじめに」セクションを参照してください。

以下の手順に従って、必要なモジュールをインストールし、Python オブジェクトを介して Databricks にアクセスしてみましょう。

必要なモジュールのインストール

pip ユーティリティを使用して、pandas、Matplotlib モジュール、および SQLAlchemy ツールキットをインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

以下のようにモジュールをインポートしてください。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python で Databricks のデータを可視化する

接続文字列を使用して接続できます。create_engine 関数を使用して、Databricks のデータを操作するための Engine を作成します。

engine = create_engine("databricks:///?Server=127.0.0.1&HTTPPath=MyHTTPPath&User=MyUser&Token=MyToken")

Databricks への SQL の実行

pandas の read_sql 関数を使用して、SQL ステートメントを実行し、結果セットを DataFrame に格納します。

df = pandas.read_sql("SELECT City, CompanyName FROM Customers WHERE Country = 'US'", engine)

Databricks のデータの可視化

クエリ結果が DataFrame に格納されたら、plot 関数を使用して Databricks のデータを表示するグラフを作成します。show メソッドで、グラフを新しいウィンドウに表示します。

df.plot(kind="bar", x="City", y="CompanyName")
plt.show()

無料トライアル & 詳細情報

CData Python Connector for Databricks の 30日間無料トライアルをダウンロードして、Databricks のデータに接続する Python アプリケーションやスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお気軽にお問い合わせください。



完全なソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("databricks:///?Server=127.0.0.1&HTTPPath=MyHTTPPath&User=MyUser&Token=MyToken")
df = pandas.read_sql("SELECT City, CompanyName FROM Customers WHERE Country = 'US'", engine)

df.plot(kind="bar", x="City", y="CompanyName")
plt.show()

はじめる準備はできましたか?

Databricks Connector のコミュニティライセンスをダウンロード:

 ダウンロード

詳細:

Databricks Icon Databricks Python Connector お問い合わせ

Databricks データ接続用のPython コネクタライブラリ。Pandas、SQLAlchemy、Dash & petl など人気のPython ツールとDatabricks を連携。