Python で pandas を使って BigQuery データを可視化する方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
pandas などのモジュールを使って Python で BigQuery のデータをリアルタイムに分析・可視化する方法を紹介します。

Python の豊富なエコシステムを活用することで、作業を迅速に開始し、システム間の連携をより効果的に行うことができます。CData Python Connector for Google BigQuery、pandas および Matplotlib モジュール、SQLAlchemy ツールキットを組み合わせることで、BigQuery に接続した Python アプリケーションやスクリプトを構築し、BigQuery のデータを可視化できます。この記事では、pandas、SQLAlchemy、Matplotlib の組み込み関数を使用して BigQuery のデータに接続し、クエリを実行して結果を可視化する方法を説明します。

CData Python Connector は、組み込みの最適化されたデータ処理機能により、Python での BigQuery のデータへのリアルタイムアクセスにおいて比類のないパフォーマンスを提供します。BigQuery に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を BigQuery に直接プッシュし、サポートされていない操作(多くの場合、SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。

BigQuery データ連携について

CData は、Google BigQuery のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:

  • OAuth、OAuth JWT、GCP インスタンスなど、すぐに使える幅広い認証スキームのサポートにより、BigQuery へのアクセスを簡素化します。
  • BigQuery と他のアプリケーション間の双方向データアクセスにより、データワークフローを強化します。
  • SQL ストアドプロシージャを通じて、ジョブの開始・取得・キャンセル、テーブルの削除、ジョブロードの挿入など、主要な BigQuery アクションを実行できます。

多くの CData のお客様は、Google BigQuery をデータウェアハウスとして使用しており、CData ソリューションを使用して、別々のソースからビジネスデータを BigQuery に移行し、包括的な分析を行っています。また、BigQuery データの分析やレポート作成に当社の接続機能を使用するお客様も多く、両方のソリューションを使用しているお客様も多数います。

CData が Google BigQuery 体験をどのように向上させるかについての詳細は、ブログ記事をご覧ください:https://jp.cdata.com/blog/what-is-bigquery


はじめに


BigQuery のデータへの接続

BigQuery のデータへの接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。

BigQuery 接続プロパティの取得・設定方法

Google BigQuery はOAuth 認証標準を使用します。個々のユーザーとしてGoogle API にアクセスするには、組み込みクレデンシャルを使うか、OAuth アプリを作成します。

OAuth では、Google Apps ドメインのユーザーとしてサービスアカウントを使ってアクセスすることもできます。サービスカウントでの認証では、OAuth JWT を取得するためのアプリケーションを登録する必要があります。

OAuth 値に加え、DatasetId、ProjectId を設定する必要があります。詳細はヘルプドキュメントの「はじめに」を参照してください。

以下の手順に従って、必要なモジュールをインストールし、Python オブジェクトを介して BigQuery にアクセスしてみましょう。

必要なモジュールのインストール

pip ユーティリティを使用して、pandas、Matplotlib モジュール、および SQLAlchemy ツールキットをインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

以下のようにモジュールをインポートしてください。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python で BigQuery のデータを可視化する

接続文字列を使用して接続できます。create_engine 関数を使用して、BigQuery のデータを操作するための Engine を作成します。

engine = create_engine("googlebigquery:///?DataSetId=MyDataSetId&ProjectId=MyProjectId")

BigQuery への SQL の実行

pandas の read_sql 関数を使用して、SQL ステートメントを実行し、結果セットを DataFrame に格納します。

df = pandas.read_sql("SELECT OrderName, Freight FROM Orders WHERE ShipCity = 'New York'", engine)

BigQuery のデータの可視化

クエリ結果が DataFrame に格納されたら、plot 関数を使用して BigQuery のデータを表示するグラフを作成します。show メソッドで、グラフを新しいウィンドウに表示します。

df.plot(kind="bar", x="OrderName", y="Freight")
plt.show()

無料トライアル & 詳細情報

CData Python Connector for Google BigQuery の 30日間無料トライアルをダウンロードして、BigQuery のデータに接続する Python アプリケーションやスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお気軽にお問い合わせください。



完全なソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("googlebigquery:///?DataSetId=MyDataSetId&ProjectId=MyProjectId")
df = pandas.read_sql("SELECT OrderName, Freight FROM Orders WHERE ShipCity = 'New York'", engine)

df.plot(kind="bar", x="OrderName", y="Freight")
plt.show()

はじめる準備はできましたか?

Google BigQuery Connector のコミュニティライセンスをダウンロード:

 ダウンロード

詳細:

Google BigQuery Icon Google BigQuery Python Connector お問い合わせ

Google BigQuery へのデータ連携用のPython Connector ライブラリ。pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにGoogle BigQuery をシームレスに統合。