Azure Databricks でAmazon Athena のデータに接続してデータ処理を行う方法
Databricks は、Apache Spark によるデータ処理機能を提供するクラウドベースのサービスです。CData JDBC ドライバと組み合わせることで、Databricks を使用してリアルタイムAmazon Athena のデータのデータエンジニアリングとデータサイエンスを実行できます。この記事では、Azure で CData JDBC ドライバをホストし、Databricks からリアルタイムAmazon Athena のデータに接続してデータを処理する方法を説明します。
最適化されたデータ処理機能を組み込んだ CData JDBC ドライバは、リアルタイムAmazon Athena のデータとのインタラクションにおいて卓越したパフォーマンスを発揮します。Amazon Athena に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を直接Amazon Athenaにプッシュし、サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。動的メタデータクエリ機能により、ネイティブのデータ型を使用してAmazon Athena のデータの操作・分析が可能です。
Amazon Athena データ連携について
CData は、Amazon Athena のライブデータにアクセスし、統合するための最も簡単な方法を提供します。お客様は CData の接続機能を以下の目的で使用しています:
- IAM 認証情報、アクセスキー、インスタンスプロファイルなど、さまざまな方法で安全に認証できます。多様なセキュリティニーズに対応し、認証プロセスを簡素化します。
- 詳細なエラーメッセージにより、セットアップを効率化し、問題を迅速に解決できます。
- サーバーサイドでのクエリ実行により、パフォーマンスを向上させ、クライアントリソースへの負荷を最小限に抑えます。
ユーザーは、Tableau、Power BI、Excel などの分析ツールと Athena を統合し、お気に入りのツールから詳細な分析を行うことができます。
CData を使用した Amazon Athena のユニークなユースケースについては、ブログ記事をご覧ください:https://jp.cdata.com/blog/amazon-athena-use-cases
はじめに
CData JDBC ドライバを Azure にインストール
Databricks でリアルタイムAmazon Athena のデータを操作するには、Azure Data Lake Storage(ADLS)を通じてドライバーをインストールします。(以前のバージョンの記事で説明していた DBFS を介した接続方法は非推奨となっていますが、廃止日は公開されていません。)
- JDBC JAR ファイルを任意の Blob コンテナにアップロードします(例:「databrickslibraries」ストレージアカウントの「jdbcjars」コンテナ)。
- ストレージアカウントから「セキュリティとネットワーク」を展開し、「アクセスキー」をクリックしてアカウントキーを取得します。使用するキーを表示してコピーしてください。
- コンテナに移動し、JAR を保存している特定のコンテナを開き、JDBC JAR ファイルのエントリを選択して JAR ファイルの URL を取得します。ファイルの詳細が開き、URL をクリップボードにコピーするボタンがあります。この値は以下のようになります(「blob」の部分はストレージアカウントの種類によって異なる場合があります):
https://databrickslibraries.blob.core.windows.net/jdbcjars/cdata.jdbc.salesforce.jar
- Databricks クラスターの「Configuration」タブで「Edit」ボタンをクリックし、「Advanced options」を展開します。そこで、以下の Spark オプション(JAR URL のドメイン名から派生)に、コピーしたアカウントキーを値として追加し、「Confirm」をクリックします:
spark.hadoop.fs.azure.account.key.databrickslibraries.blob.core.windows.net
- Databricks クラスターの「Libraries」タブで「Install new」をクリックし、ADLS オプションを選択します。ドライバー JAR の ABFSS URL(これも JAR URL のドメイン名から派生)を指定し、「Install」をクリックします。ABFSS URL は以下のようになります:
abfss://jdbcjars@databrickslibraries.blob.core.windows.net/cdata.jdbc.salesforce.jar
Databricks からAmazon Athenaに接続
JAR ファイルがインストールされたら、Databricks でリアルタイムAmazon Athena のデータを操作する準備が整いました。まず、ワークスペースで新しいノートブックを作成します。ワークブックに名前を付け、言語として Python が選択されていることを確認し(デフォルトで選択されているはずです)、「Connect」をクリックして「General Compute」から JDBC ドライバーをインストールしたクラスターを選択します(デフォルトで選択されているはずです)。
Amazon Athenaへの接続を設定
JDBC ドライバのクラスを参照し、JDBC URL で使用する接続文字列を構築してAmazon Athenaに接続します。また、JDBC URL に RTK プロパティを設定する必要があります(Beta ドライバーを使用している場合を除く)。このプロパティの設定方法については、インストールに含まれるライセンスファイルを参照してください。
driver = "cdata.jdbc.amazonathena.AmazonAthenaDriver" url = "jdbc:amazonathena:RTK=5246...;AccessKey='a123';SecretKey='s123';Region='IRELAND';Database='sampledb';S3StagingDirectory='s3://bucket/staging/';"
組み込みの接続文字列デザイナー
JDBC URL の構築には、Amazon Athena JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。
java -jar cdata.jdbc.amazonathena.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Amazon Athena 接続プロパティの取得・設定方法
それでは、早速Athena に接続していきましょう。
データに接続するには、以下の接続パラメータを指定します。
- DataSource:接続するAmazon Athena データソース。
- Database:接続するAmazon Athena データベース。
- AWSRegion:Amazon Athena データがホストされているリージョン。
- S3StagingDirectory:クエリの結果を保存するS3 フォルダ。
Database またはDataSource が設定されていない場合、CData 製品はAmazon Athena の利用可能なデータソースからすべてのデータベースのリスト化を試みます。そのため、両方のプロパティを設定することでCData 製品のパフォーマンスが向上します。
Amazon Athena の認証設定
CData 製品は幅広い認証オプションに対応しています。詳しくはヘルプドキュメントの「はじめに」を参照してみてください。
AWS キーを取得
IAM ユーザーの認証情報を取得するには、以下のステップお試しください。
- IAM コンソールにサインインします。
- ナビゲーションペインでユーザーを選択します。
- ユーザーのアクセスキーを作成または管理するには、ユーザーを選択してからセキュリティ認証情報タブに移動します。
AWS ルートアカウントの資格情報を取得するには、以下のステップをお試しください。
- ルートアカウントの認証情報を使用してAWS 管理コンソールにサインインします。
- アカウント名または番号を選択します。
- 表示されたメニューでMy Security Credentials を選択します。
- ルートアカウントのアクセスキーを管理または作成するには、Continue to Security Credentials をクリックし、[Access Keys]セクションを展開します。
その他の認証オプションについては、ヘルプドキュメントの「Amazon Athena への認証」を参照してください。
Amazon Athena のデータの読み込み
接続を設定したら、CData JDBC ドライバと接続情報を使用してAmazon Athena のデータをデータフレームとして読み込むことができます。
remote_table = spark.read.format ( "jdbc" ) \ .option ( "driver" , driver) \ .option ( "url" , url) \ .option ( "dbtable" , "Customers") \ .load ()
Amazon Athena のデータの表示
読み込んだAmazon Athena のデータを display 関数で確認してみましょう。
display (remote_table.select ("Name"))
Azure Databricks でAmazon Athena のデータを分析
Databricks SparkSQL でデータを処理したい場合は、読み込んだデータを一時ビューとして登録します。
remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )
以下の SparkSQL で分析用のAmazon Athena のデータを取得できます。
result = spark.sql("SELECT Name, TotalDue FROM SAMPLE_VIEW")
Amazon Athena からのデータは、対象のノートブック内でのみ利用可能です。他のユーザーと共有したい場合は、テーブルとして保存してください。
remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )
CData JDBC Driver for Amazon Athena の30日間の無償トライアルをダウンロードして、Azure Databricks でリアルタイムAmazon Athena のデータを活用してみてください。ご不明な点があれば、サポートチームまでお気軽にお問い合わせください。