Python で pandas を使って Amazon S3 データを可視化する方法
Python の豊富なエコシステムを活用することで、作業を迅速に開始し、システム間の連携をより効果的に行うことができます。CData Python Connector for Amazon S3、pandas および Matplotlib モジュール、SQLAlchemy ツールキットを組み合わせることで、Amazon S3 に接続した Python アプリケーションやスクリプトを構築し、Amazon S3 のデータを可視化できます。この記事では、pandas、SQLAlchemy、Matplotlib の組み込み関数を使用して Amazon S3 のデータに接続し、クエリを実行して結果を可視化する方法を説明します。
CData Python Connector は、組み込みの最適化されたデータ処理機能により、Python での Amazon S3 のデータへのリアルタイムアクセスにおいて比類のないパフォーマンスを提供します。Amazon S3 に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を Amazon S3 に直接プッシュし、サポートされていない操作(多くの場合、SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。
Amazon S3 のデータへの接続
Amazon S3 のデータへの接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。
Amazon S3 リクエストを認可するには、管理者アカウントまたはカスタム権限を持つIAM ユーザーの認証情報を入力します。AccessKey をアクセスキーID に設定します。SecretKey をシークレットアクセスキーに設定します。
Note: AWS アカウント管理者として接続できますが、AWS サービスにアクセスするにはIAM ユーザー認証情報を使用することをお勧めします。
尚、CData 製品はAmazon S3 のファイルの一覧表示やユーザー管理情報の取得用です。S3 に保管されているExcel、CSV、JSON などのファイル内のデータを読み込みたい場合には、Excel Driver、CSV Driver、JSON Driver をご利用ください。
アクセスキーの取得
IAM ユーザーの資格情報を取得するには:
- IAM コンソールにサインインします。
- ナビゲーションペインで「ユーザー」を選択します。
- ユーザーのアクセスキーを作成または管理するには、ユーザーを選択してから「セキュリティ認証情報」タブを選択します。
AWS ルートアカウントの資格情報を取得するには:
- ルートアカウントの資格情報を使用してAWS 管理コンソールにサインインします。
- アカウント名または番号を選択し、表示されたメニューで「My Security Credentials」を選択します。
- 「Continue to Security Credentials」をクリックし、「Access Keys」セクションを展開して、ルートアカウントのアクセスキーを管理または作成します。
AWS ロールとして認証
多くの場合、認証にはAWS ルートユーザーのダイレクトなセキュリティ認証情報ではなく、IAM ロールを使用することをお勧めします。RoleARN を指定することでAWS ロールを代わりに使用できます。これにより、CData 製品は指定されたロールの資格情報を取得しようと試みます。
(すでにEC2 インスタンスなどで接続されているのではなく)AWS に接続している場合は、ロールを引き受けるIAM ユーザーのAccessKey とSecretKey を追加で指定する必要があります。AWS ルートユーザーのAccessKey および SecretKey を指定する場合、ロールは使用できません。
SSO 認証
SSO 認証を必要とするユーザーおよびロールには、RoleARN およびPrincipalArn 接続プロパティを指定してください。各Identity Provider に固有のSSOProperties を指定し、AccessKey とSecretKey を空のままにする必要があります。これにより、CData 製品は一時的な認証資格情報を取得するために、リクエストでSSO 認証情報を送信します。
以下の手順に従って、必要なモジュールをインストールし、Python オブジェクトを介して Amazon S3 にアクセスしてみましょう。
必要なモジュールのインストール
pip ユーティリティを使用して、pandas、Matplotlib モジュール、および SQLAlchemy ツールキットをインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
以下のようにモジュールをインポートしてください。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Python で Amazon S3 のデータを可視化する
接続文字列を使用して接続できます。create_engine 関数を使用して、Amazon S3 のデータを操作するための Engine を作成します。
engine = create_engine("amazons3:///?AccessKey=a123&SecretKey=s123")
Amazon S3 への SQL の実行
pandas の read_sql 関数を使用して、SQL ステートメントを実行し、結果セットを DataFrame に格納します。
df = pandas.read_sql("SELECT Name, OwnerId FROM ObjectsACL WHERE Name = 'TestBucket'", engine)
Amazon S3 のデータの可視化
クエリ結果が DataFrame に格納されたら、plot 関数を使用して Amazon S3 のデータを表示するグラフを作成します。show メソッドで、グラフを新しいウィンドウに表示します。
df.plot(kind="bar", x="Name", y="OwnerId") plt.show()
無料トライアル & 詳細情報
CData Python Connector for Amazon S3 の 30日間無料トライアルをダウンロードして、Amazon S3 のデータに接続する Python アプリケーションやスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお気軽にお問い合わせください。
完全なソースコード
import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin
engine = create_engine("amazons3:///?AccessKey=a123&SecretKey=s123")
df = pandas.read_sql("SELECT Name, OwnerId FROM ObjectsACL WHERE Name = 'TestBucket'", engine)
df.plot(kind="bar", x="Name", y="OwnerId")
plt.show()