Python でAirtable のデータを変換・出力するETL 処理を作る方法
Pythonエコシステムには多くのモジュールがあり、システム構築を素早く効率的に行うことができます。本記事では、CData Python Connector for Airtable とpetl フレームワークを使って、Airtable のデータにPython から接続してデータを変換、CSV に出力するETL 変換を実装してみます。
CData Python Connector は効率的なデータ処理によりAirtable のデータ にPython から接続し、高いパフォーマンスを発揮します。Airtable にデータをクエリする際、ドライバーはフィルタリング、集計などがサポートされている場合SQL 処理を直接Airtable 側に行わせ、サポートされていないSQL 処理については、組み込みのSQL エンジンによりクライアント側で処理を行います(JOIN やSQL 関数など)。
必要なモジュールのインストール
pip で必要なモジュールおよびフレームワークをインストールします:
pip install petl pip install pandas
Python でAirtable のデータをETL 処理するアプリを構築
モジュールとフレームワークをインストールしたら、ETL アプリケーションを組んでいきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。
CData Connector を含むモジュールをインポートします。
import petl as etl import pandas as pd import cdata.airtable as mod
接続文字列で接続を確立します。connect 関数を使って、CData Airtable Connector からAirtable への接続を行います
cnxn = mod.connect("APIKey=keymz3adb53RqsU;BaseId=appxxN2fe34r3rjdG7;TableNames=TableA,...;ViewNames=TableA.ViewA,...;")
Airtable への接続
それでは、Airtable に接続していきましょう。CData 製品は、Airtable にテーブルとビューを要求します。 Schema プロパティ(オプション)を使用すると、表示されるテーブルおよびビューを特定のベースに制限できます。 特定のベースに制限したい場合は、このプロパティを使用するスキーマの名前に設定してください。(これはAirtable のBase 名に相当します。)
すべてのAirtable Bases に加えて、DataModelInformation という名前の静的スキーマもご利用いただけます。 このスキーマでは、Bases、Tables、Users のような静的テーブルをクエリできます。 DisplayObjectIds がTrue に設定されている場合、Schema の値は名前ではなくAirtable Base id に設定する必要があります。
Airtableへの認証
続いて、認証方法を設定しましょう。個人用アクセストークンまたはOAuth PKCE のいずれかを使用してAirtable に認証できます。
個人用アクセストークン
個人用アクセストークンをまだ生成していない場合は、以下のステップで生成してみましょう。
- ユーザーアカウントにログインします
- "https://airtable.com/create/tokens" に移動します
- Create new token をクリックします
- Scopes で、Add a scope をクリックして以下の各スコープを追加します
- data.records:read
- data.records:write
- schema.bases:read
- Access で、トークンにアクセス権を付与するすべてのワークスペースとベースを追加します
- Create token をクリックしてトークンを生成します。生成されたトークンは一度しか表示されませんので、必ずコピーして保存してください
次に、以下の設定を行います。
- AuthScheme:PersonalAccessToken
- Token:先ほど生成した個人用アクセストークンの値
OAuth PKCE については、 href="/kb/help/" target="_blank">ヘルプドキュメントの「はじめに」をご確認ください。
Airtable をクエリするSQL 文の作成
Airtable にはSQL でデータアクセスが可能です。SampleTable_1 エンティティからのデータを読み出します。
sql = "SELECT Id, Column1 FROM SampleTable_1 WHERE Column1 = 'Value1'"
Airtable データのETL 処理
DataFrame に格納されたクエリ結果を使って、petl でETL(抽出・変換・ロード)パイプラインを組みます。この例では、Airtable のデータ を取得して、Column1 カラムでデータをソートして、CSV ファイルにデータをロードします。
table1 = etl.fromdb(cnxn,sql) table2 = etl.sort(table1,'Column1') etl.tocsv(table2,'sampletable_1_data.csv')
CData Python Connector for Airtable を使えば、データベースを扱う場合と同感覚で、Airtable のデータ を扱うことができ、petl のようなETL パッケージから直接データにアクセスが可能になります。
おわりに
Airtable Python Connector の30日の無償トライアル をぜひダウンロードして、Airtable のデータ への接続をPython アプリやスクリプトから簡単に作成しましょう。
フルソースコード
import petl as etl
import pandas as pd
import cdata.airtable as mod
cnxn = mod.connect("APIKey=keymz3adb53RqsU;BaseId=appxxN2fe34r3rjdG7;TableNames=TableA,...;ViewNames=TableA.ViewA,...;")
sql = "SELECT Id, Column1 FROM SampleTable_1 WHERE Column1 = 'Value1'"
table1 = etl.fromdb(cnxn,sql)
table2 = etl.sort(table1,'Column1')
etl.tocsv(table2,'sampletable_1_data.csv')