Python で pandas を使って Adobe Commerce データを可視化する方法
Python の豊富なエコシステムを活用することで、作業を迅速に開始し、システム間の連携をより効果的に行うことができます。CData Python Connector for Adobe Commerce、pandas および Matplotlib モジュール、SQLAlchemy ツールキットを組み合わせることで、Adobe Commerce に接続した Python アプリケーションやスクリプトを構築し、Adobe Commerce のデータを可視化できます。この記事では、pandas、SQLAlchemy、Matplotlib の組み込み関数を使用して Adobe Commerce のデータに接続し、クエリを実行して結果を可視化する方法を説明します。
CData Python Connector は、組み込みの最適化されたデータ処理機能により、Python での Adobe Commerce のデータへのリアルタイムアクセスにおいて比類のないパフォーマンスを提供します。Adobe Commerce に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を Adobe Commerce に直接プッシュし、サポートされていない操作(多くの場合、SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。
Adobe Commerce のデータへの接続
Adobe Commerce のデータへの接続は、他のリレーショナルデータソースへの接続と同様です。必要な接続プロパティを使用して接続文字列を作成します。この記事では、接続文字列を create_engine 関数のパラメータとして渡します。
Adobe Commerce はOAuth 1 認証標準を使用します。Adobe Commerce REST API に接続するには、Adobe Commerce システムにアプリを登録してOAuthClientId、OAuthClientSecret、およびCallbackURL 接続プロパティの値を取得する必要があります。 OAuth 値を取得して接続するには、ヘルプドキュメントの「はじめに」を参照してください。
また、Adobe Commerce システムへのURL を提供する必要があります。URL は、Adobe Commerce REST API を顧客として使用しているか管理者として使用しているかによって異なります。
-
Customer: Adobe Commerce を顧客として使用するには、事前にAdobe Commerce のホームページで顧客アカウントを作成します。これを行うには、「アカウント」->「登録」をクリックします。それからURL 接続プロパティをAdobe Commerce システムのエンドポイントに設定します。
-
Administrator: Adobe Commerce を管理者として使用するには、代わりにCustomAdminPath を設定します。この値は、「Admin」メニューの「Advanced」設定で取得できます。「System」->「Configuration」->「Advanced」->「Admin」->「Admin Base URL」を選択することでアクセスできます。
このページ上の「Use Custom Admin Path」設定がYES に設定されている場合、値は「Custom Admin Path」テキストボックス内にあります。それ以外の場合は、CustomAdminPath 接続プロパティをデフォルト値の"admin" に設定します。
以下の手順に従って、必要なモジュールをインストールし、Python オブジェクトを介して Adobe Commerce にアクセスしてみましょう。
必要なモジュールのインストール
pip ユーティリティを使用して、pandas、Matplotlib モジュール、および SQLAlchemy ツールキットをインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
以下のようにモジュールをインポートしてください。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Python で Adobe Commerce のデータを可視化する
接続文字列を使用して接続できます。create_engine 関数を使用して、Adobe Commerce のデータを操作するための Engine を作成します。
engine = create_engine("adobecommerce:///?OAuthClientId=MyConsumerKey&OAuthClientSecret=MyConsumerSecret&CallbackURL=http://127.0.0.1:33333&Url=https://myadobecommercehost.com")
Adobe Commerce への SQL の実行
pandas の read_sql 関数を使用して、SQL ステートメントを実行し、結果セットを DataFrame に格納します。
df = pandas.read_sql("SELECT Name, Price FROM Products WHERE Style = 'High Tech'", engine)
Adobe Commerce のデータの可視化
クエリ結果が DataFrame に格納されたら、plot 関数を使用して Adobe Commerce のデータを表示するグラフを作成します。show メソッドで、グラフを新しいウィンドウに表示します。
df.plot(kind="bar", x="Name", y="Price") plt.show()
無料トライアル & 詳細情報
CData Python Connector for Adobe Commerce の 30日間無料トライアルをダウンロードして、Adobe Commerce のデータに接続する Python アプリケーションやスクリプトの構築を始めましょう。ご質問がありましたら、サポートチームまでお気軽にお問い合わせください。
完全なソースコード
import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin
engine = create_engine("adobecommerce:///?OAuthClientId=MyConsumerKey&OAuthClientSecret=MyConsumerSecret&CallbackURL=http://127.0.0.1:33333&Url=https://myadobecommercehost.com")
df = pandas.read_sql("SELECT Name, Price FROM Products WHERE Style = 'High Tech'", engine)
df.plot(kind="bar", x="Name", y="Price")
plt.show()